
Extraction of archetype from near
duplicates in software documentation

Dmitry Koznov
Software Engineering Dept.

Saint Petersburg State University
St Petersburg, Russia

d.koznov@spbu.ru

ORCID: 0000-0003-2632-3193

Dmitry Luciv
Software Engineering Dept.

Saint Petersburg State University
St Petersburg, Russia

d.lutsiv@spbu.ru

ORCID: 0000-0002-6332-2360

George Chernishev
Analytical Information Systems Dept.

Saint Petersburg State University
St Petersburg, Russia

g.chernyshev@spbu.ru

ORCID: 0000-0002-4265-9642

Dmitry Grigoryev
Computer Science Dept.

Saint Petersburg State University
St Petersburg, Russia

d.a.grigoriev@spbu.ru

ORCID: 0000-0001-7855-0254

Abstract—Software documentation contains a large amount
of duplicate text, which is often comprised of near duplicates —
repetitions of the same text with slight differences. They emerge
due to numerous copy-pastes that have been slightly modified.
Uncontrolled near duplicates complicate documentation support
to a significant degree. There are some research papers on detec-
tion and management of duplicates in software documentation,
but only the Duplicate Finder approach addresses the problem
of near duplicates. Nevertheless, Duplicate Finder’s search
algorithms do not provide extraction of archetype (common text)
for detected groups of near duplicates (a set of near duplicates
belong to one group if they have a lot of commonalities).
Archetype of group can be used in visualization of the common
text and differences of duplicates for manual analysis, as well
as for reuse of documentation. In this paper, we present an
algorithm for archetype extraction and results of experiments on
documentation of several well-known open source Java projects
JUnit, Mockito, SLF4J.

Index Terms—Software Documentation, JavaDoc, Duplicates,
Near Duplicates

I. INTRODUCTION

Contemporary software documentation, just like the soft-

ware, is becoming increasingly more complicated with every

passing year. During the last 50 years, the importance of

software documentation has been noted unfailingly. However,

the problem of its quality has been recognized as well.

One of the obstacles for efficient documentation mainte-

nance is the presence of textual duplicates [1–4]. A textual

duplicate is a fragment of text which is repeated multiple

times throughout the document, possibly with some degree

of variation. Software documents accumulate a large num-

ber of textual duplicates during development and especially

maintenance. Usually, textual duplicates emerge as the result

of a copy-paste pattern where a textual fragment is copied

and pasted into a different part of the document, possibly in

a modified form. A collection of near duplicates which have a

meaningful common part (an archetype) and small differences

(deltas) can be combined in a single group [5].Thus, the term

“the archetype of a near duplicate group” can be utilized.

The Duplicate Finder approach has been proposed in [4].

It implements interactive detection of near duplicates in soft-

ware documentation [6]. Here, the meaningfulness of a found

duplicate is provided via user participation. However, this

approach does not explicitly extract the archetype of a near

duplicate group. Meanwhile, archetypes allow to apply reuse

techniques to documentation [2, 7–9], as well as improve

the visualization of near duplicates, highlighting both the

common part and differences of near duplicate groups.

The contributions of this paper are as follows:

• an algorithm for automatic extraction of the archetype

of a near duplicate group, an estimate of its complexity,

as well as new definitions of a near duplicate group and

an archetype.

• an evaluation of the archetype extraction algorithm on

documentation of open source projects JUnit, Mockito,

SLF4J.

The rest of this paper is organized as follows: Back-

ground (Section II) describes our previous work which pro-

vides the context for the current paper. Related work (Sec-

tion III) describes the longest common subsequence problem

because it is the closest to archetype extraction, as well as

the existing approaches in this area. Definitions (Section IV)

provides basic definitions used in this work, including new

definitions of a near duplicate group and an archetype.

Archetype extraction algorithm (Section V) describes the pro-

posed algorithm, provides an estimate of its complexity, and

discusses its limitations. Evaluation (Section VI) describes

the evaluation of the algorithm.

II. BACKGROUND

Our previous research was dedicated to adaptive reuse of

software documentation [7, 8] based on extending adaptive

reuse of software by Bassett-Jarzabek [5, 10] to the docu-

mentation domain. In this context, we have faced the problem

of detection of near duplicates. In most cases, real software

documentation is developed ad hoc, and it needs improve-

ment: in particular, by means of searching for near duplicates

and facilitating documentation reuse. Methods and algorithms

for near duplicate detection were suggested [6, 8, 11, 12], a



method to improve software documentation based on dupli-

cate detection was presented [13], the Duplicate Finder tool

to support duplicate detection was developed [4].
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Fig. 1. Software documentation improvement workflow

The context of this paper is a method for pattern based near

duplicate detection presented in [6]. This method provides

meaningfulness of duplicate detection via user participation.

A diagram which describes the workflow of the technique is

presented in Fig. 1. Let us describe the method in detail.

During Duplicate map generation, a reuse map of the

document is created. As preparation, the automated near

duplicate detection algorithm is run. It provides every token

of the document with a weight that equals the number of near

duplicates that contain this token. These weights are normal-

ized, and next, represented by colors of different saturation

from red to white. Thus, the user sees the most repeated

text fragments in the document as the reddest areas on the

map. In one of these areas, the user selects a search pattern

(Selecting a search pattern), and then starts the Pattern based
near duplicate search. Next, the user performs Correction
of a near duplicate group that was detected, removing false

positives and modifying boundaries of the text fragments.

Pattern-based near duplicate search uses Levenshtein dis-

tance [14] to detect similar text fragments, but does not

extract common parts of these text fragments explicitly. In

turn, it does not have visualization of common parts and

differences of near duplicates in one group. Moreover, it does

not allow to perform documentation refactoring and reuse the

way we have suggested in [8, 11]. We close the gap in this

paper.

III. RELATED WORK

The problem of finding the commonalities in some data

(and the related problem of finding differences) is well

known. For example, there is a large number of diff algo-

rithms which compare text, trees, etc. [15, 16]. However, these

algorithms usually compare only two information asserts. In

our case, the number of text fragments in a near duplicate

group is generally greater than two.

Sequence Alignment is a known bioinformatics prob-

lem [17], which is aimed at finding similar genome regions.

These algorithms are used for text analysis as well [18],

and they can be applied to two and more data elements.

Despite them being suitable for our task, we should note that

these algorithms are intended for large data volumes, and the

tools that implement them are complicated and heavyweight.

Meanwhile, in our case it would be more appropriate to use

simpler solutions.

Token-based clone detectors can be employed for solving

our task [19]. However, these tools are intended for source

code analysis. Therefore, they have to be additionally config-

ured and adapted to be used for documentation. We have used

Clone Miner [20], but it emerged that its algorithms are quite

complex and somewhat generally oriented. Besides, they do

not work quite as required for solving our task. Furthermore,

these tools contain bugs that are not easy to fix. All of these

reasons make using this kind of tools not appropriate for our

task.

The Longest Common Subsequence problem is widely

known [21]. It is aimed at finding commonalities in dif-

ferent kinds of data sets. Its contexts are natural language

processing [22, 23], time series analysis [24], etc. However,

the context of our task includes not only finding an LCS, but

also calculating all of its occurrences (i.e. coordinates) in the

input data. Nevertheless, there are algorithms for this problem

that have open source implementations and are not intended

for tasks that are more general. Thus, they are reliable. We

have decided to use one of these algorithms [25] and its open

source implementation in Python [26].

IV. DEFINITIONS

Let us provide several definitions that will be used further

on for describing the proposed archetype extraction algo-

rithm.

Definition 1: A document D is an ordered sequence of

tokens (words).

It should be noted that, compared to [6], we use tokens

rather than symbols. Neither the definitions nor the algorithm

and its properties are affected by this.

Definition 2: A text fragment of document D is f = (b, e),
where b denotes the number of the first token of the fragment

from the start of document D, and e — the last. The length

of fragment f is denoted as |f | = (e− b+1), and its tokens

as t1, . . . , t|f |.
Definition 3: An exact duplicate group is a collection of

document fragments whose text is identical.

Definition 4: Let F = {f1, . . . , fN} be a set of text

fragments of D, and A = 〈A1, . . . , AM 〉 be a sequence of

exact duplicate groups. The following is satisfied:

1) For each f j and ∀i aji ⊂ f j , and in each f j elements

aji occur in increasing order of i.
2) A′ = 〈A′

1, . . . , A
′
M ′〉, for which the previous property

is satisfied, and
∑M ′

j=1

∑N
i=1 |a′ij | >

∑M
j=1

∑N
i=1 |aij |,

does not exist.

Then A is the archetype of F , the remaining text of F is

deltas.

Definition 5: F = {f1, . . . , fN} is a near duplicate group
if:

1) ∃A = 〈A1, . . . , AM 〉 which is the archetype of F , and

2) ∃ 0 < k ≤ 1:

∀j ∈ {1, . . . , N} :

∑M
i=1 |aji |
|f j | ≥ k.

Let us consider an example of a near duplicate group from

the JUnit documentation F = {f1, f2}. The f1 is as follows:

A matcher that delegates to
throwableMatcher and in addition appends
the stacktrace of the actual Throwable in
case of a mismatch.

The f2 looks like this:



A matcher that delegates to
exceptionMatcher and in addition appends
the stacktrace of the actual Exception in
case of a mismatch.

We have bolded the deltas here. As can be seen, the

fragments of the archetype belong to three exact groups

A = 〈A1, A2, A3〉: A1 consists of three occurrence of

the following string “A matcher that delegates
to”, A2 — “and in addition appends the
stacktrace of the actual”, and A3 —“in case
of a mismatch”.

Definition 6: LCS(s1, s2) is an operation that detects the

longest common subsequence of tokens for strings s1 and s2.

Definition 7: next(s, t, n) = inf{j|sj = t ∧ j ≥ n} is a

function looks up the first token t in string s, starting with

index n ∈ 1, . . . , |s|.
V. ARCHETYPE EXTRACTION ALGORITHM

A. Algorithm

The proposed algorithm consists of two parts: (i) detecting

repeating text in the fragments of a near duplicate group

and (ii) calculating the occurrences of this text. Every oc-

currence of the archetype
〈
aj1, . . . , a

j
M

〉
in text fragment f j

is represented as a collection of integer intervals, where each

interval comprises a pair of coordinates (beginning and end)

of an archetype fragment aji in document D. The specification

of the algorithm is presented in Listing 1. The input of the

algorithm is a group of near duplicates F = f1, ...fN found

in document D. The output of the algorithm is the group’s

archetype A = 〈A1, . . . , AN 〉, which is a sequence of exact

duplicate groups of document D, where
〈
aj1, . . . , a

j
M

〉
are

contained in f j .

Algorithm 1: Extraction of near duplicate group

archetype

Input: F = {f1, . . . , fN} — near duplicate group

1 N ← #F
2 T ← f1

3 for j = 2, . . . , N do T ← LCS(T, f j)
// T = t1, . . . , t|T | contains archetype

tokens
4 A ← empty sequence, B = 0, E′ = 0, E = 0
// B,E′, E are integer vectors

5 for j = 1, . . . , N do bj ← next(f j , t1, 1)
6 E ← B
7 for t = t2, . . . , t|T | do
8 for j = 1, . . . , N do e′j ← next(f j , t, ej + 1)
9 if ∃j : e′j > ej + 1 then

10 append 〈(b1, e1), . . . , (bN , eN )〉 to A
11 B ← E′

12 E ← E′

13 append 〈(b1, e1), . . . , (bN , eN )〉 to A
Output: A — archetype of F

On lines 2 and 3, the archetype is detected as a sequence of

tokens. Next, on lines 4–13, the occurrences of this sequence

in every text fragment f j are calculated, i.e., exact duplicate

groups are constructed. The loop on line 5 calculates the

first token of the archetype in every text fragment f j (i.e.,

the first token for all elements of the first exact duplicate

group A1). The loop on line 7 iterates over all tokens of

the archetype, starting with the second one. On line 8, all

of the occurrences of archetype token ti in text fragments

of F are found (more precisely, the closest occurrences to

the previously found occurrences of ti−1). The coordinates

of these occurrences are placed into vector E′. Lines 9–11

check whether if it is true that at least one occurrence of ti
(vector E′) does not come after the corresponding occurrence

of ti−1 in D (vector). If this is not true, then the construction

of the current exact duplicate group continues. However, if

it is true, then the group that was constructed on this step is

added to the archetype (line 10), and coordinates contained

in E′ are considered as the start of a new group (line 11).

On line 13, the construction of the last exact duplicate group

added to A is finished. Note that the construction of the first

and the last groups of A is removed from the main loop (lines

7–12), because the loop detects the extension points of the

archetype, whereas the beginning and the end cannot be such.

B. Complexity

Theorem 1: The computational complexity of the proposed

algorithm is O(N ∗ L2
F ), where N is the number of near

duplicates in F , and LF = maxfj∈F |f j | is the size of the

largest (by the number of tokens) text fragment in F .

We will prove that the complexity can be estimated as

O((N − 1) ∗ L2
F ) + O(N ∗ LF ). The assertion of the

theorem will follow from this, since, in our case, LF ≥
1. During archetype extraction, we search for the longest

common subsequence of strings that consist of no more

than LF = maxfi∈F |f i| tokens N − 1 times. The al-

gorithm of LCS(s1, s2) calculation has the complexity of

O(|s1|∗ |s2|) [25]. Hence, we can estimate the computational

complexity of archetype extraction as O((N−1)∗L2
F ). Dur-

ing the detection of archetype occurrences in near duplicates,

all N near duplicates (that contain no more than LF tokens

each) are iterated over with the next operation once. Hence,

the complexity of the loops on lines 6 and 7 is estimated

as O(N ∗ LF ), although they are nested. Furthermore, oc-

casionally, component-wise operations on vectors B,E,E′

and a collection of exact groups V are performed inside

the loop on lines 6–11 and outside of it. The complexity

of each such operation is estimated as O(N). They are

performed no more than |T | times, but since it is obvious

that |A| ≤ LF , the complexity of the entire second part of the

algorithm can be estimated as O(N ∗LF ). Thus, the overall

computational complexity of the algorithm can be estimated

as O((N − 1) ∗ L2
F ) +O(N ∗ LF ).

C. Constraints

In some cases, the found occurrences of an archetype in

near duplicates and even its composition can depend on the

order the duplicates are being considered. However, these

cases are extremely rare in practice, and taking them into

account increases the complexity of the algorithm. Therefore,

we have decided to disregard them.

VI. EVALUATION

The proposed algorithm has been implemented in the Du-

plicate Finder toolkit [4]. We have used the longest common

subsequence algorithm (LCS) from [25, 26].

For our experiments, we have used three well-known open

source Java projects: JUnit, Mockito, and SLF4J. Using

Duplicate Finder, we have found 190 near duplicates in 50



groups in their JavaDoc documentation. In the process, we

have limited the search to the comments to similar methods

(e.g., assertEquals for different parameter types).

We have obtained the following performance results for this

corpus: the archetype extraction algorithm run for less than

0.01 second for any group, which is negligible in comparison

to pattern search (from 5 seconds to 2 minutes [6]). The

archetypes of all groups were detected correctly.

We have conducted more experiments for additional quality

control of archetype extraction. We have found duplicate

groups which contained the largest text fragments (from 80

to 500 tokens) and whose archetype was split into many

parts (with a maximum of 7). These kind of data are quite

complex for our algorithm. In one case, the algorithm’s output

was incorrect. Moreover, it emerged that when archetype

extraction is conducted on large text fragments that do not

have any common text, the algorithm places random words

into the archetype. For example, consider a string “for
Mockito class”. The algorithm will find its duplicate

in a different text fragment as several disconnected words

“for...Mockito...Class”, adding all of them to the

archetype. However, we should note that both cases arised on

quite complex text fragments that are rarely encountered in

practice.

A lot of the near duplicates (copy-pastes) we have found

were actually exact duplicates except for the occurrences

of a single term, e.g., bool/double/char. Large new

text fragments were inserted into copy-pastes locally. At

the same time, detecting the near duplicate groups in our

experiments, we were trying to make each of them comprise

a full description of some source code functionality.

According our experiments copy-pasted fragments rarely

changed a lot on a small text interval, which is proven by

the small number of splits. That is, the average number of

elements in archetype A = 〈A1, . . . , AM 〉 in our corpus

was |A| = 3. Therefore, on average archetypes were split

into three parts. However, we have found an example that

contained seven.

Furthermore, in 60 groups we detected it was found 9

exact duplicate groups. In our previous studies [6, 8, 12],

the percentage of exact duplicate groups was significantly

higher. Furthermore, considering near duplicate groups, most

of their archetypes were split into two parts, i.e. |A| = 2.

Therefore, we can hypothesize that the majority of duplicates

in documentation are near duplicates, and there is only a

problem to detect them. To do that we need to have the

available tools, as well as the efficiency of the grouping

technique used. We have confirmed the necessity for the latter

in this study: often, ambiguities arise during classification.

Consider an example. String S is quite short and is often

encountered in text (we have had cases where the number

of occurrences has been greater than 100). However, some

of its occurrences are contained in larger fragments that are

also duplicates, but there is a considerably smaller number of

them. It is unclear in which group S should be placed under

condition that we would like to have duplicate groups that

do not intersect. Moreover, even more complicated cases can

arise.

The technique should also contain rules for detecting

boundaries of copy-pastes that are included into near du-

plicate groups. As mentioned above, we believe that one

group should correspond to different descriptions of the

same functionality in source code, used in different parts

of software. For example, several methods for creating a

rectangle can exist in a graphical library: using specified

points, etc. The documentation for all of these methods can

be identical, only differing in the parameter descriptions. It

may be reasonable to have a single near duplicate group that

contains the documentation for all such methods.

VII. CONCLUSION

The proposed archetype extraction algorithm has signifi-

cantly improved practical usability of the interactive dupli-

cated search in software documentation. First, an explicitly

detected archetype allows to see the copy-pasted text clearly,

as well as what has been added to it in every fragment. This

eases finding discrepancies in a text fragments, and improves

the understanding of situation with duplicate text as a whole.

Second, having an archetype facilitates the reuse of documen-

tation text, replacing the archetype in every group with an

occurrence of the same text, and represent the differences of

the fragments as parameters of these occurrences [7, 8]. With

this, it becomes possible to automatically apply all changes

of the archetype to all fragments of the group.

Our further research will be focused on implementing

documentation reuse in different documentation formats, as

well as integration of both pattern-based search and archetype

extraction with duplicate visualization tools. The obtained

results can be used for studying near duplicates in software

documentation. Furthermore, it would be reasonable to de-

velop an experimental tool for duplicate detection specifically

in JavaDoc comments, providing users with both a technique

for grouping similar information and additional duplicate

attributes (for example, names for program entities that the

duplicates are referring to). Finally, an interesting research

direction is integration of task of finding and using near

duplicates with ontology engineering [27, 28].
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