
PROGRAMMING AND COMPUTER SOFTWARE

SOFTWARE ENGINEERING, SOFTWARE TESTING AND VERIFICATION

CALCULATING SIMILARITY OF JAVADOC COMMENTS
© 20XX y. D.V. Koznov1, E.Yu. Ledeneva2, D.V. Luciv1, P.I. Braslavski3

1 Saint Petersburg State University, 199034 St. Petersburg, Universitetskaya Emb., 7–9
2 Yandex LLC, 119021 Moscow, Lva Tolstogo st., 7

3 HSE University, 109028 Moscow, Pokrovsky blvd., 11
E-mail: d.koznov@spbu.ru; ekiuled@gmail.com; d.lutsiv@spbu.ru; pbras@yandex.ru

Code comments are an essential part of software documentation. Many software projects suffer from the
problem of low-quality comments that are often produced by copy-paste. In case of similar methods,
classes, etc. copy-pasted comments with minor modifications are justified. However, in many cases this
approach leads to degraded documentation quality and, subsequently, to problematic maintenance and
development of the project. In this study, we address the problem of near-duplicate code comments
detection, which can potentially improve software documentation. We have conducted a thorough
evaluation of traditional string similarity metrics and modern machine learning methods. In our
experiment, we use a collection of Javadoc comments from four industrial open-source Java projects.
We have found out that LCS (Longest Common Subsequence) is the best similarity algorithm taking
into account both quality (Precision 94%, Recall 74%) and performance.

Keywords: software documentation, Javadoc comments, similarity measure

1. INTRODUCTION

Code documentation is one of the most important
types of software documentation. It is essential
for overall software maintenance and especially for
application-program interfaces (APIs), which are
intended to be used by other developers [1].

Special documentation tools (e.g., Javadoc,
Doxygen) produce readable and navigable
web-based code documentation from tagged code
comments and other artifacts (e.g., standalone
texts, .dot format diagrams, method signatures,
etc.). Javadoc is a de-facto standard for Java
applications. It includes a markup language and
a tool, which are integrated into most Java IDEs
such as Eclipse, IDEA, etc.

There are many duplicates in comments because
copy-paste is often used to write a new comment
for a new class, method, etc. [2, 3]. This is widely
practised because very often new code entities are
significantly functionally similar to a previously
created one. Consequently, their corresponding
comments are very similar as well. The copy-pasted
comment is modified in accordance to the specifics

of the code entity it belongs to, and thus spawns
not an exact duplicate, but a near duplicate
instead. However, it is possible for copy-pasted
comments to contain incorrect information due to
various reasons. One of them is the developers’
lack of time for less prioritized tasks: a developer
might copy-paste an old comment, change it
slightly, postpone a final revision, and, finally,
forget about it altogether. Errors in changes are
also possible (e.g. forgetting to change some names
in a copy-pasted comment). Thus, a presence
of near duplicates is considered normal practice,
but due to the aforementioned problems, there
is a need for specialized tools for their detection
and analysis to identify inconsistencies between
comments and code [2].

A number of papers has been dedicated
to duplicates in code comments [2, 3, 4, 5].
Nevertheless, not enough attention is paid to both
automatic detection of duplicates and search of
near duplicates. As a matter of fact, only [3]
suggest a toolset for duplicate detection, but it
does not deal with near duplicates.

This paper closes the gap considering near

1

2 D.V. Koznov, E.Yu. Ledeneva, D.V. Luciv, P.I. Braslavski

duplicates in Javadoc comments. We explore
various state-of-the-art algorithms to evaluate
pairwise similarity of Javadoc comments,
considering both string matching algorithms and
modern machine learning (ML) algorithms. For our
experiments, we have used four widely known open
source Java projects: GSON, JUnit4, Mockito,
and Slf4J. We have found out that LCS (Longest
Common Subsequence) is the best similarity
algorithm taking into account both quality
(Precision 94%, Recall 74%) and performance.We
have found a reasonable number of near duplicate
pairs and detected some copy-paste errors.

2. BACKGROUND

2.1. NEAR DUPLICATE JAVADOC
COMMENTS

Let us consider two methods from the JUnit4
project: assertTrue and assertFalse. The first one
throws an exception if its argument (a condition) is
true, the next one does the same when its argument
is false. The functionality of these methods is very
similar, and consequently, their comments should
also be very alike. Indeed, these comments differ
by one word only: it is bold in the example below.
Thus, they are near duplicates.

/** Asserts that a condition is true. If it
isn't it throws an AssertionError
without a message.
@param condition condition to be checked */

public static void assertTrue(boolean condition)

/** Asserts that a condition is false. If it
isn't it throws an AssertionError
without a message.
@param condition condition to be checked */

public static void assertFalse(boolean condition)

2.2. SELECTED SIMILARITY ALGORITHMS

A similarity function is necessary to detect
near duplicate comments (strings). We consider
the most well-known state-of-the-art similarity
algorithms, both string matching and machine
learning: Longest Common Subsequence (LCS),
Cosine Similarity (COS), Locality-Sensitive
Hashing (LSH), Word Mover’s Distance (WMD),
doc2vec (D2V), and Siamese Neural Network
(SNN). A short overview of the algorithms is
presented in Table 1.

Table 1.: A Brief Overview of Algorithms Selected

Algorithm Description

LCS [6] Measures the total length of the
longest matching substrings in both
strings (text fragments) appearing in
the same order.

COS [7] Transforms a string into term
frequency (TF) into multidimensional
vector. Each component of the vector
is proportional to the frequency of use
of this word in the text and inversely
proportional to the frequency of use
of the word in the totality of the
analyzed texts (inverse document
frequency, IDF). The similarity of
these vectors is calculated as the
cosine of the angle between them.

LSH [8] Represents a string as a bag of
n-grams (series of several adjacent
words), to which the minhash
algorithm [9] is applied, splits the
resulting bit vectors into fragments
and calculates the proportion of
matching vector fragments resulting
from different strings.

WMD [10] Represents two strings as clouds
of points in a vector space
(embeddings), and calculates their
similarity as the cost of moving
one cloud into the other. It uses
word2vec to construct embeddings
for words of the string, based on a
neural network model that learns
word associations from a large corpus
of text.

D2V [11] An extension of word2vec that
constructs embeddings for entire
documents rather than individual
words.

SNN [12] A neural network with two
subnetworks sharing both
architecture and weights. Our
implementation uses LSTM (Long
Short Term Memory) components.

PROGRAMMING AND COMPUTER SOFTWARE

CALCULATING SIMILARITY OF JAVADOC COMMENTS 3

LCS, COS, and LSH are widely known string
matching algorithms which are based on different
ideas. We have used implementations of LCS from
the difflib library1, COS from the scipy library2

and the LSH implementation was adopted from the
datasketch library3.

WMD, D2V, and SNN are some of the leading
and most promising machine learning algorithms
for text processing. We have adopted WDM and
D2V from gensim4 and SNN from Keras5.

3. RELATED WORK

Very often code comments are not of very high
quality — they may be incomplete and contain
errors and inconsistencies [13, 14]. Moreover, if
the system is big enough, often its code comments
do not have a unified style, because different
developers write in different manners [15]. There
is a number of research methods and tools for
detection of errors and inconsistencies in code
comments [5, 16, 17, 18, 19, 20]. But the task is
still far from being solved, so it is open for new
approaches.

There is some research on duplicates in software
documentation — a survey can be found in [15, 21].
In [15, 21, 22, 23] near duplicates in software
documentation are considered, but these papers
do not deal with Javadoc comments. Nasal and
Poruban [4] consider near duplicates in Javadoc.
However, they only present a Javadoc extension
for comment reuse, and no tools for detection
of near duplicates. Oumaziz et al. [2] and Blasi
et al. [3] have explored the connection between
duplicate Javadoc comments and duplicates in
code, but they did not consider near duplicates.
Wagner and Fernández [24] wrote about similarity
algorithms for software texts, but they have
given only an overview of state-of-art approaches
without considering Javadoc. Meanwhile, Javadoc
is a popular approach for commenting Java code
and is used in most Java projects.

Existing research on Javadoc duplicates is that
it does not use modern similarity algorithms for

1https://docs.python.org/3/library/difflib.html
2https://scipy.org
3http://ekzhu.com/datasketch/
4https://radimrehurek.com/gensim/
5https://keras.io/

duplicate detection. Additionally, it does not take
into account near duplicates properly.

4. EXPERIMENT DESIGN

In [15, 21], duplicate fragments are considered
without taking into account the structure of the
document, which leads to the detection of a large
quantity of meaningless duplicates. Furthermore,
the capability to search for duplicated Javadoc
tags is offered [2]. However, this approach finds
too many duplicates, which are additionally very
fine-grained, and the obtained information is too
complex to analyze. We have chosen to search
for near duplicates in whole comments that belong
to specific code entities (such as a class, method,
annotation, etc.). This allows us to operate with
meaningful text fragments.

We have used well-known Java projects for our
experiments, presented in Table 2. Besides the
volume of source code, we have also reported
the number of classes, methods, and comments
for every project, as well as the number of
duplicate pairs we found in these projects for our
experiments.

We have involved two industrial Java developers
as experts in our study. To mitigate threats to
validity, they both worked independently on the
same data, after which they have discussed their
results and resolved conflicting decisions.

We have created our expert-annotated dataset
in the following way. First, we have connected
all source text of all projects in a single file.
Next, we have kept only Javadoc comments and
their corresponding code entities in the file. After
that, we have applied Clone Miner (a token-based
software clone detection tool) [25] and obtained a
set of clone groups in comments, with minimum size
of 5 words in a clone, following [21]. For each clone
group 𝐺, we split 𝐺 into two groups if a clone of
𝐺 contained text from two neighboring comments
(Clone Miner does not consider the structure of the
analyzed text): in our study, a found clone did
not contain text from more than two neighboring
comments. Next, we have sorted these groups
by clone size. Afterwards, we have replaced each
group 𝐺 with 𝐺′: for each text fragment 𝑔 ∈ 𝐺
the comment 𝑔′ that contains the fragment 𝑔 was
recovered and added to 𝐺′. Further on, the experts
have manually analyzed each comment group and

PROGRAMMING AND COMPUTER SOFTWARE

https://docs.python.org/3/library/difflib.html
https://scipy.org
http://ekzhu.com/datasketch/
https://radimrehurek.com/gensim/
https://keras.io/

4 D.V. Koznov, E.Yu. Ledeneva, D.V. Luciv, P.I. Braslavski

Table 2.: Evaluated projects

Name Size, KB Classes Methods Comments Pairs

GSON6 480 50 281 426 364

JUnit47 588 103 433 602 744

Mockito8 901 110 471 669 786

Slf4J9 163 21 158 227 706

selected pairs of similar comments. We have
used Duplicate Finder [23] to visualize duplicate
fragments of comments in a group. Therefore, pairs
marked as positive for similarity were constructed
from the comments from within a single clone
group. To the obtained set of positives (similar
pairs), we have automatically added the same
number of negatives (dissimilar pairs) from different
groups, which were then additionally reviewed by
the experts. The whole process was facilitated with
a number of Python scripts developed by us.

As the result, our expert-annotated dataset
consists of 2600 comment pairs in total (see the
“Pairs” column in Table 2). The average length of
a Javadoc comment in the considered projects is
52 words.

When deciding whether a pair is positive or
negative, the experts considered not only the
textual similarity of comments, but also the
likeness of functionality that these comments
describe. There are situations in which the
comments are similar textually, but this similarity
is provided only by standalone words or short
word combinations. These pairs were marked
as negative. Another situation is comments in
a pair having a single common tag (e.g., the
same exception), but the functionality of the
corresponding program entities is very different.
These pairs were also marked as negative. At
last, it is possible for short comments to include
the same word combination describing the same
program object (e.g. “tests to be run by the
receiver”), but the whole respective functionality
to be completely different. In this case, the experts
also marked the pair as negative.

We have conducted two experiments.
Experiment 1 was performed on the
expert-annotated dataset with a 70/30 train-test
split. We have calculated a threshold for every
algorithm maximizing F1 on the train part of
the dataset. Additionally, to adapt the machine
learning algorithms (WMD, D2V, SNN) to our
task, we trained their embeddings on a large
dataset of Javadoc comments found on Kaggle10

(around 2 000 000 comments).
To obtain more realistic results, we have

conducted Experiment 2 substituting test data
with a full set of Javadoc comments of the JUnit4
project. Here we excluded JUnit4 pairs, used as a
part of training data before. Since new test data
were not fully annotated by experts (when creating
the expert-annotated dataset, we did not detect all
of positive comment pairs in considered projects),
they verified additional positive pairs from the
entire output of Experiment 2 manually. To
simplify their work, they have used the Duplicate
Finder visualizer [23] to highlight the similar text
in the pairs.

Since our input data for both experiments was
not balanced regarding to the number of positive
and negative pairs, we drew conclusions about the
results of our experiments based on three metrics —
accuracy (P, Precision), completeness (R, Recall)
and measure F1.

5. RESULTS AND DISCUSSION

The results of our study are presented in Table 3.
Columns 2–4 represent Experiment 1, and columns
5–8 contain the results of Experiment 2. In
Experiment 1 F1 oscillates from 0.94 to 0.97.
String matching algorithms show stable Precision
(0.97), whereas for ML algorithms Precision ranges
from 0.92 (SNN) to 0.98 (WMD).

The results we obtained in Experiment 2
are worse than in Experiment 1. This can be
explained by the fact that in Experiment 1 we
have used a dataset created manually by experts.

6https://github.com/google/gson
7https://github.com/junit-team/junit4
8https://github.com/mockito/mockito
9https://github.com/qos-ch/slf4j
10Kaggle dataset,

https://www.kaggle.com/isofew/code-comment-pairs

PROGRAMMING AND COMPUTER SOFTWARE

https://github.com/google/gson
https://github.com/junit-team/junit4
https://github.com/mockito/mockito
https://github.com/qos-ch/slf4j
https://www.kaggle.com/isofew/code-comment-pairs

CALCULATING SIMILARITY OF JAVADOC COMMENTS 5

Table 3.: Experiment results

Algs Experiment 1 Experiment 2
Prec Rec F1 Prec Rec F1 Time, s

LCS 0.97 0.95 0.96 0.96 0.74 0.84 15

COS 0.97 0.94 0.96 0.88 0.82 0.85 19

LSH 0.97 0.90 0.94 0.93 0.69 0.80 625

D2V 0.94 0.99 0.97 0.64 0.90 0.75 3157

WMD 0.98 0.95 0.96 0.97 0.73 0.84 1949

SNN 0.92 0.97 0.95 0.79 0.86 0.82 82

Consequently, the training data consisted of
well-separated pairs, i.e. their scores were close
to 1 for positives and to 0 for negatives. When
carrying out Experiment 2, we have had a larger
number of pairs having similarities close to the
threshold value separating negatives and positives.
They should have been used as training data, but
due to the high complexity of expert’s estimation
(a reasonable number such pairs were found) , this
was not done. Machine learning algorithms used
in our research, especially D2V, turned out to be
more sensitive to this specific of input data than
string algorithms.

Experiment 2 shows that there are quite a
lot near duplicate comments — 564 from 602
comments in total included in JUnit4 project.
Consequently, most comments in the considered
project are near duplicates and just a few ones
are unique. It shows that copy-pastes are normal
in comment development for real-life industrial
projects, although some additional experiments
should be performed.

The run time of all algorithms on the JUint4
project data is shown in the Time column of
Table 3. D2V and WMD have shown the worst time
of all algorithms (50 and 30 minutes respectively).
It should be noted that JUNit4 is not a large
project. Therefore, this time is unacceptable for
practical usage. D2V is slow since it computes its
weights “on-the-fly”, whereas all other algorithms
use weights computed during the training phases.
The variant of the WMD algorithm we used stalled
Earth Mover’s Distance metric computation, and in
general its complexity is estimated as 𝑂(𝑝3 · 𝑙𝑜𝑔 𝑝),
where 𝑝 is the number of unique words in the

compared text fragments. LCS, COS, and SNN run
times range from 15 seconds to 1.5 minutes, which
is acceptable for practical use.

LCS, COS, and WMD have shown the best
results over the both experiments. However, WMD
significantly loses in run time to string matching
algorithms. Furthermore, LCS has shown the
best performance, so we consider it to be the
best choice for practical usage. This conclusion
corresponds to the one made in [22], although the
set of the algorithms used in their study differs from
ours. LSH did not perform very well since Javadoc
comments are smaller than DITA topics considered
in [22]. This is the reason why hashed signatures
turned out to be not so efficient.

6. CONCLUSION

We have analyzed similarity algorithms on the task
of similarity of Javadoc comments. We have found
out that existing algorithms are well-suited for this
task. Our experimental results show that LCS
(a string matching algorithm) is the best choice.
It seems that combining supervised methods with
domain-specific features and classic string matching
algorithms could provide a more suitable result
than pure machine learning. This question needs
further research, as it seems that ML algorithms
have a large potential, which, however, requires a
lot of effort to be developed.

We have managed to find several copy-paste
errors during data analysis: variations of some
comment pairs that were not valid or, in other
cases, they should have been but are absent. We
can devise creating approaches and tools based on
similarity algorithms for finding copy-paste errors
as a direction for further research. Finally, it
also important to improve the quality of comment
similarity calculation algorithms by adding new
domain-specific features and training them against
larger amounts of input data that is better balanced
regarding to the number of positive and negative
comment pairs.

References

1. Spinellis, D. Code Documentation /
D. Spinellis // IEEE Softw. — 2010. —
Vol. 27, no. 4. — P. 18–19.

PROGRAMMING AND COMPUTER SOFTWARE

6 D.V. Koznov, E.Yu. Ledeneva, D.V. Luciv, P.I. Braslavski

2. Oumaziz, M. A. Documentation Reuse: Hot or
Not? An Empirical Study / M. A. Oumaziz
et al. // Proc. of ICSR 2017. — 2017. —
P. 12–27.

3. Blasi, A. Replicomment: identifying clones in
code comments / A. Blasi, A. Gorla // Proc.
of ICPC 2018, Gothenburg, Sweden. — ACM,
2018. — P. 320–323.

4. Nosál, M. Reusable software documentation
with phrase annotations / M. Nosál,
J. Porubän // Central Eur. J. Comput.
Sci. — 2014. — Vol. 4, no. 4. — P. 242–258.

5. Corazza, A. On the Coherence between
Comments and Implementations in
Source Code / A. Corazza et al. //
EUROMICRO-SEAA. — 2015. — P. 76–83.

6. Chin, F. Y. L. Binary Codes Capable
of Correcting Deletions, Insertions and
Reversals / F. Y. L. Chin, C. K. Poon // A
fast algorithm for computing longest common
subsequences of small alphabet size. — 1991.
— Vol. 13(4). — P. 463–469.

7. Manning, C. D. Introduction to information
retrieval / C. D. Manning et al. — 2008. —
Vol. 1.

8. Gionis, A. Similarity Search in High
Dimensions via Hashing / A. Gionis et al. //
Proc. of VLDB 1999, Edinburgh, Scotland, UK.
— Morgan Kaufmann, 1999. — P. 518–529.

9. Broder, A. Z. On the resemblance and
containment of documents / A. Z. Broder //
Compression and Complexity of Sequences
1997. Proceedings. — IEEE, 1997. — P. 21–29.

10. Kusner, M. J. From Word Embeddings To
Document Distances / M. J. Kusner et al. //
Proc. of ICML 2015, Lille, France. — Vol. 37.
— JMLR.org, 2015. — P. 957–966.

11. Le, Q.V. Distributed Representations of
Sentences and Documents / Q.V. Le,
T. Mikolov // ICML 2014. — Vol. 32 of
JMLR Workshop and Conference Proceedings.
— 2014. — P. 1188–1196.

12. Mueller, J. Siamese Recurrent Architectures
for Learning Sentence Similarity / J. Mueller,
A. Thyagarajan // Proc. AAAI, 2016. — AAAI
Press, 2016. — P. 2786–2792.

13. Tan, S. H. @tComment: Testing Javadoc
Comments to Detect Comment-Code
Inconsistencies / S. H. Tan et al. // ICST
2012. — IEEE Computer Society, 2012. —
P. 260–269.

14. Fluri, B. Do Code and Comments Co-Evolve?
On the Relation between Source Code and
Comment Changes / B. Fluri, M. Würsch,
H. C. Gall // Proc. of WCRE 2007, Vancouver,
BC, Canada. — IEEE Computer Society, 2007.
— P. 70–79.

15. Luciv, D. Detecting Near Duplicates in
Software Documentation / D. Luciv,
D. Koznov, G. Chernishev et al. //
Programming and Computer Software. —
2018. — Vol. 44, no. 5. — P. 335–343.

16. Wen, F. A large-scale empirical study on
code-comment inconsistencies / F. Wen
et al. // Proc. of ICPC 2019 / Ed. by
Y. Guéhéneuc et al. — IEEE / ACM, 2019. —
P. 53–64.

17. Wang, D. Deep Code-Comment Understanding
and Assessment / D. Wang et al. //
IEEE Access. — 2019. — Vol. 7. —
P. 174200–174209.

18. Zhou, Y. Analyzing APIs documentation and
code to detect directive defects / Y. Zhou
et al. // Proc of the ICSE 2017, Buenos Aires,
Argentina. — IEEE / ACM, 2017. — P. 27–37.

19. Ratol, I. K. Detecting fragile comments /
I. K. Ratol, M. P. Robillard // Proc. of ASE
2017, Urbana, IL, USA. — IEEE Computer
Society, 2017. — P. 112–122.

20. Otaibi, J. A. Machine Learning and Conceptual
Reasoning for Inconsistency Detection /
J. A. Otaibi et al. // IEEE Access. — 2017.
— Vol. 5. — P. 338–346.

21. Koznov, D. V. Clone Detection in Reuse
of Software Technical Documentation /

PROGRAMMING AND COMPUTER SOFTWARE

CALCULATING SIMILARITY OF JAVADOC COMMENTS 7

D. V. Koznov et al. // 10th International
Andrei Ershov Informatics Conference, PSI
2015. — Vol. 9609 of LNCS. — Springer, 2015.
— P. 170–185.

22. Soto, A. J. Similarity-Based Support for Text
Reuse in Technical Writing / A. J. Soto
et al. // Proc. of the ACM DocEng 2015,
Lausanne, Switzerland / Ed. by C. Vanoirbeek,
P. Genevès. — ACM, 2015. — P. 97–106.

23. Luciv, D. Duplicate finder toolkit / D. Luciv,
D. Koznov, G. Chernishev et al. // Proc. of
ICSE 2018: Companion Proceeedings. — 2018.
— P. 171–172.

24. Wagner, S. Analyzing Text in Software
Projects / S. Wagner, D. M. Fernández //
The Art and Science of Analyzing Software
Data / Ed. by Christian Bird et al. — Morgan
Kaufmann / Elsevier, 2015. — P. 39–72.

25. Basit, H. A. Efficient token based clone
detection with flexible tokenization /
H. A. Basit et al. // Proceedings of the
ESEC/SIGSOFT FSE, 2007. — 2007. —
P. 513–516.

PROGRAMMING AND COMPUTER SOFTWARE

