
ISSN 0361-7688, Programming and Computer Software, 2019, Vol. 45, No. 6, pp. 346–355. © Pleiades Publishing, Ltd., 2019.
Published in Programmirovanie, 2019, Vol. 45, No. 6.
Interactive Near Duplicate Search in Software Documentation
D. V. Luciva,*, D. V. Koznova,**, A. A. Shelikhovskiia,***, K. Yu. Romanovskya,****,

G. A. Chernisheva,*****, A. N. Terekhova,******, D. A. Grigorieva,*******,
A. N. Smirnovaa,********, D. V. Borovkova,*********, and A. I. Vaseninaa,**********

aSt. Peterburg University, St Petersburg, 199034 Russia
* e-mail: d.lutsiv@spbu.ru

** e-mail: d.koznov@spbu.ru
*** e-mail: tshel231@gmail.com

**** e-mail: k.romanovsky@spbu.ru
***** e-mail: g.chernyshev@spbu.ru
****** e-mail: a.terekhov@spbu.ru

******* e-mail: d.a.grigoriev@spbu.ru
******** e-mail: anna.en.smirnova@gmail.com

********* e-mail: danila_yumsh@mail.ru
********** e-mail: saibrog@yandex.ru

Received June 28, 2018; revised September 5, 2018; accepted September 5, 2018

Abstract—Various software features such as classes, methods, requirements, and tests often have similar func-
tionality. This can lead to emergence of duplicates in their descriptive documentation. Uncontrolled dupli-
cates created via copy/paste hinder the process of documentation maintenance. Therefore, the task of dupli-
cate detection in software documentation is of importance. Solving it makes planned reuse possible, as well
as creating and using templates for unification and automatic generation of documentation. In this paper, we
present an approach for interactive detection of near duplicates that involves the user in order to conduct
meaningful search. It includes a new formal definition of a near duplicate, a pattern-based , and the proof of
its completeness. Moreover, we demonstrate the results of experimenting on a collection of documents of sev-
eral industrial projects.

DOI: 10.1134/S0361768819060045

1. INTRODUCTION
Software documentation quality issues have been

studied since the 1970’s [1], and continue to be
addressed nowadays [2]. Besides, the documentation,
similarly to software, becomes increasingly complex,
requires more and more resources for its development
and maintenance.

Copy/paste is commonly used in creating and
modifying documents: a fragment of text is copied
multiple times, and then edited and expanded to suit
the subject. The use of this technique is justified by the
fact that many software features described in docu-
mentation reuse functionality – this is true for
requirements, user interface elements, tests, source
code, etc. However, without the aid of specialized
tools, repeatedly copied fragments create additional
difficulties during maintenance because they require
extensive synchronisation of changes in corresponding
software features. Software reuse is a considerably
more advanced research area than software documen-
tation reuse. There is a multitude of studies on soft-

ware reuse and a part of them has been adopted by the
industry (see surveys [3–5]). However, the problem of
software documentation reuse largely remains a sub-
ject of academic research only [6–10]. We should also
mention the problem of documentation unification –
if there is a large volume of similar information, it is
only reasonable to have it presented in a consistent
manner. Thus, duplicate detection and duplicate
examination are important for setting up documenta-
tion reuse and unification.

Duplicates in software documentation have been
extensively studied during the last decade [6, 11–17].
At the same time, there are no specialized tools for
duplicate detection. Generally, various text search
tools are used for this purpose. However, these tools
cannot be employed in detection of near duplicates,
i.e. text fragments with a substantial common part and
certain variations. For this reason, we have created
Duplicate Finder [18, 19]. In [16], we have presented
a near duplicate search algorithm which considers
near duplicates as a combination of exact duplicates.
346

INTERACTIVE NEAR DUPLICATE SEARCH 347
However, the output quality of this algorithm was low
because it does not assess the meaningfulness of found
duplicates.

In this paper we present an an approach for inter-
active detection of near duplicates. We involve the
user in order to provide meaningfulness of the search
process. In short, this process is organized as follows.
At first, we automatically create a map of exact dupli-
cates of the document using Clone Miner [20].

The next step relies on the following assumption:
an accumulation of exact duplicates in a certain place
of the document points to a possible emergence of a
near duplicate. At this step, the user moves to the most
duplicate-populated document section using this map
as a clue. After that, they select the text fragment that
contains the most frequently used exact duplicates.
Then, the user transforms this fragment into a full
description of a certain software feature by extending
its bounds. This way, the user ensures the meaningful-
ness of the fragment. Next, this description (textual
string) is used as a pattern for further search. The user
can also edit the search results by filtering out false
positives and ensuring the meaningfulness of found
fragments by expanding or narrowing their bounds in
the document.

This article is organized as follows. In Section 2 we
present an overview of existing studies that are similar
to the current work, and in Section 3 we describe the
approaches, methods, and technologies we have used
in our study. Section 4 contains the description of the
interactive near duplicate search technique. In Section 5
we propose a new formal definition of a near dupli-
cate, and in Section 6 we present the pattern-based
near duplicate search algorithm that forms the basis of
the proposed technique. In addition, we formulate the
criterion of completeness for the algorithm and prove
that the proposed algorithm is complete. In Section 7
we provide complexity estimates for the algorithm,
and in Section 8 we demonstrate the results of an
experimental evaluation.

2. RELATED WORK

Duplicates in software documentation have been
extensively studied during the last decade. Horie et al.
[6] consider duplicates in API documentation of Java
projects, extending JavaDoc with reuse tools. This
approach is expanded with consideration of near
duplicates by Nosál’ and Porubän in [12]. Similarly to
approaches presented in references [8–10], the
authors of this paper employ parametrization for
defining variative parts of duplicates. However, this
study does not consider the task of near duplicate
search itself, and their definition of a near duplicate is
informal.

In their further research [13], they examine exact
duplicates in embedded documentation of several
PROGRAMMING AND COMPUTER SOFTWARE Vol.
open-source projects, but do not consider near dupli-
cates.

Wingkvist et al. [14] use duplicates to evaluate the
quality of documentation, with no consideration of
near duplicates.

The paper [11] by Juergens et al. is an examination of
duplicates in requirement specifications: the authors
have analyzed 28 industrial documents, manually filter-
ing and classifying found duplicates. The meaning of
these duplicates was discussed (with emphasis on dupli-
cates that corresponded to code clones). They also have
studied the influence of redundancy on the speed of
reading and understanding texts. This work does not
consider other types of software documentation, as
well as near duplicates, although the authors do men-
tion their existence.

Ouzmazis et al. [7] analyze API documentation of
several well-known open source projects, classify
detected duplicates, and consider the problem of doc-
umentation reuse. They do not consider near dupli-
cates, however, they note that those duplicates occur
quite often and are important in practice.

Rago et al. [21] present near duplicate search in
textual use case descriptions with the use of natural
language processing methods. However, they consider
a highly specific type of requirement specifications,
which is rarely used in practice. Moreover, it is unclear
how to apply this method to other types of documen-
tation.

Concluding our overview, we should note that
most existing approaches except [21] use token-based
tools of code clone analysis. This fact seriously com-
plicates near duplicate detection. However, some
authors acknowledge the existence and importance of
near duplicates in documentation redundancy analysis
and documentation reuse [7, 11, 12].

The approach presented in this work is largely
based on pattern matching. This problem is well-stud-
ied and has been solved in multitude of ways for differ-
ent contexts. Let us provide a short overview of this
problem in the context of text search.

The algorithm proposed by Ukkonen [22] makes
efficient matching approximate occurrences of pattern
in text possible, but it requires a costly preprocessing
of the pattern.

Broder [23] describes a method for matching
approximate occurrences of pattern in text using infor-
mation retrieval methods; we should note that this
approach also requires expensive preprocessing of
input data (both document and pattern).

Algorithms presented in [22, 24–26] are efficient
but quite sophisticated, which complicates their use
and modification, as well as proving their formal prop-
erties.

Ukkonen’s algorithm [22] is suited for working
with an immutable pattern, and Broder’s approach
[23] operates on an immutable document. Both of
45 No. 6 2019

348 LUCIV et al.

Fig. 1. Process overview.

Documentation
Duplicate map

generation

Selecting a

search pattern

Pattern based

near duplicate

search

Forming a near

duplicate group

Near duplicate

groups
these situations are irrelevant to our task. Studies by
Landau and Vishkin [25], Myers [26] describe algo-
rithms for detecting text fragments for which Leven-
shtein distance [27] does not exceed a pre-defined
threshold. We should emphasize the high computa-
tional complexity of Levenshtein distance calculation,
which, as shown by our experiments, makes this
approach unsuitable for duplicate detection. A more
detailed review of approximate pattern matching in
text can be found in [28]. Using ideas proposed in this
research area, we have created our own pattern match-
ing algorithm while adhering to the following require-
ments:

(i) the algorithm needs to perform near duplicate
detection in accordance with our definition of near
duplicates;

(ii) we wanted to formally prove a number of prop-
erties of this algorithm;

(iii) the run time has to be adequate because the
algorithm is run in an interactive mode;

(iv) the algorithm needs to yield as few false posi-
tives as possible.

3. BACKGROUND
3.1. Edit Distance

We use edit distance [27] to determine the degree of
similarity of two text fragments (strings of text). This
distance is essentially the number of string editing
operations required to convert one string into another:
the less operations, the more similar the strings. Dif-
ferent definitions of edit distance differ by their admis-
sible operations. In our work, we use longest common
subsequence distance [29, 30] that uses only insertion
and deletion of a symbol due to its suitability for near
duplicate model described below, and, consequently,
the convenience of further proofs. The authors of [31]
prove that this type of edit distance has metric proper-
ties. Further on, we will denote the longest common
subsequence distance between two strings and as

.
Computing edit distance is a resource-consuming

task. The complexity of the algorithm we have selected
is estimated [32] as in the average case. Fur-
thermore, the authors of reference [33] show that it is
impossible to design an algorithm that can provide
better complexity estimates for the worst case. In this
work, we use the diff lib library [34], which is included
in the standard Python package (performance-critical
parts of which are implemented in C).

3.2. Detecting Exact Duplicates with Clone Miner
We have employed exact duplicate detection to cre-

ate a duplicate map, using which the user could select
a pattern for matching. We have selected Clone Miner
[20] for this task, which is a software code clone detec-

1s 2s
,1 2()d s s

∗2 1 2(| | | |)s s
PROGRAMMING A
tion tool. Clone Miner is a token-based tool, and it
does not employ an abstract syntax tree. A token is a
stand-alone word (sequence of symbols) in a docu-
ment, separated from adjacent words by such delimit-
ers as “.”, “,”, “ ”, “(”, “)”, etc. For example, the frag-
ment “FM registers” consists of two tokens. Clone
Miner considers text as an ordered collection of tokens
and detects duplicate fragments (clones) using algo-
rithms based on suffix trees [35]. We have chosen
Clone Miner because it is easily integrated with other
tools through command line interface and supports
the Russian language.

4. THE PROCESS

The general purpose of our process is to ensure
meaningfulness of duplicate detection via user inter-
action. A diagram which describes the workflow of the
process is presented in Fig. 1. Let us describe the pro-
cess in detail.

Generating a duplicate map. Using Clone Miner
[20], all exact duplicate groups in the document are
detected. Every token (word) is assigned a color from
an RGB interval from white to red: color(t) =

 where ,
, h(t) is the exact duplicate group that has

the maximum cardinality and contains (further on
called token temperature), and Tm is the maximum
cardinality of an exact duplicate group in the docu-
ment (maximum token temperature)1. The closer a
token’s color to red, the “warmer” it is. This meta-
phoricalrepresentation is called a heat map [36], an
example of which can be seen in Fig. 2

The generated heat map provides an overview of
the potential near duplicate occurences. The areas
most likely to contain near duplicates are represented
by red areas of different hue. Tokens that occur in the
reddest areas are repeated the same or roughlythe
same number of times. Therefore, the probability that
these tokens would form a meaningful near duplicate
is quite high. This way, one may hope to obtain mean-

1 We only consider groups that consist of fragments longer than
four tokens, because, according to our experiments [15], this
particular constraint filters out many false positives.

t

∗ + − ∗ ,(()/) (1 (())/)m mh t T R h t T W = , ,[1 0 0]R
= , ,[1 1 1]W

t

ND COMPUTER SOFTWARE Vol. 45 No. 6 2019

INTERACTIVE NEAR DUPLICATE SEARCH 349

Fig. 2. Duplicate map.
ingful near duplicates that appear a significant number

of times in the document.

Selecting a search pattern. The user moves to the

reddest (the “warmest”) area on the heat map (Fig. 2),

zooms in on it, and selects a fragment (pattern) for fur-

ther search (see Fig. 3). During this process, the user

does not only consider the color of the selected frag-

ment, but aims to select a fragment that describes a

software feature in full. To achieve this, the user can

either include a white-colored text fragment in the

pattern, or not include a red-colored one. Consider an

example. Following the information from Fig. 3, we

select this fragment:

“To alter the owner, you must also be a

direct or indirect member of the new

owning role, and that role must have

CREATE privilege on the table’s schema.

(These restrictions enforce that altering

the owner doesn’t do anything you

couldn’t do by dropping and recreating

table. However, a superuser can alter

ownership of any table anyway.)”

This fragment describes an integral software fea-

ture concerning the administration of the PostgreSQL

DMBS: to alter the owner of a database table, you

must also have specific rights or be an administrator.

Near duplicate search. The user selects a similarity

measure for the highlighted fragment, which is a num-

ber from to 1, and launches the pattern matching

algorithm2.

Forming a near duplicate group. Having received

the algorithm’s output, the user modifies it. During

the process the user deletes elements (near duplicate

2 The value was selected for the convenience of the
following proofs; following our experiments, we have concluded
that if the similarity measure is less than 1/2, then, for smaller
patterns (up to 15–20 tokens), the algorithm produces many
non-meaningful matches; the lower bound wehave selected is
insignificantly larger than 1/2.

1/ 3

≈1/ 3 0.577
PROGRAMMING AND COMPUTER SOFTWARE Vol.
occurences) that only resemble the pattern syntax-

wise but not meaning-wise. Furthermore, for each

occurence the user can modify thebounds of the frag-

ments to ensure the meaningfulness of each.

5. DEFINING A NEAR DUPLICATE GROUP

In this section we generalize the definition of a near

duplicate group that we have proposed earlier in

[16, 37]. In contrast with the previous definition, here

we use a parameter instead of a constant to define the

similarity measure, and we allow to place extension

points at the ends of duplicates. We will consider a

document as a finite sequence of symbols, denoting

its length as .

Definition 1. A text fragment is an occurrence of a

certain symbol string in document .

Therefore, for every text fragment of document

 there is an integer interval , where is the posi-

tion of the first symbol of the fragment, and is the

position of the last. By , we denote a text frag-

ment of document . Next, let be the function

that maps a text fragment to its interval, and let

 be the function that maps a text fragment to its

textual content. By and we denote the posi-

tions of the beginning and the end of . Next, is a

function that takes a text fragment and returns its

length as . Finally, we introduce a

two-place predicate , which is true if and

only if .

Definition 2. Near duplicate group. Consider a col-

lection of text fragments of document D.

We will call this collection a near duplicate group with

the similarity measure (or simply a near

duplicate group) if the following conditions are satis-

fied.

(1) holds ;

(2) There exists a ordered collection of strings

 such as there is an occurrence of this collec-

tion in every text fragment, i.e.

 and holds

, where is an occurrence of in ,

and the following condition is satisfied:

We define the archetype of a given group as a col-

lection of strings . It is easy to show that the
definition proposed above generalizes the definition

D
length()D

D
g

D ,[]b e b
e

∈g D
g D []g

g
str()g g

b()g e()g
g | |g

g
= + −| | 1 e() b()g g g

,1 2Before()g g
<1 2e() b()g g

, ,1 Mg … g

∈ ,(1/ 3 1]k

∀ ∈ … −{1, , 1}i M +, 1Before()i ig g

, ,1()NI … I
{ }∀ ∈ …1, ,j M

∀ ∈ … ⊂{1, , } str()i ji N I g ∀ ∈ … −{1, , 1}i N

+1Before(,)
j j

i iI I j
iI iI jg

=∀ ∈ … ≥
∑

1

| |

{1, , } .

N

i
i

j

I
j M k

g

, ,1()NI … I
45 No. 6 2019

350 LUCIV et al.

Fig. 3. Selecting a search pattern (PostgreSQL documentation).
given in [16, 37]. If is a near duplicate group, then
by |G| denote the number of elements of this group.

Definition 3. Consider a text fragment of docu-

ment (p ∈ D) and g ∈ D. We say that is a near dupli-

cate of with similarity , if and form a near dupli-

cate group with similarity defined according to 2.

6. PATTERN BASED NEAR DUPLICATE
SEARCH ALGORITHM

6.1. Algorithm De3scription

The algorithm consists of three phases. At phase 1
(scanning), document D is scanned by a sliding win-

dow of size with a one symbol step3. The text

fragment that corresponds to the current window

position is compared to pattern p using edit distance,

and if they are close, i.e. , then this frag-

ment is saved in the set . The threshold value is

defined as follows:

(1)

This choice will be explained below.

At phase 2 (“shrinking”), we search for the largest

text fragment that is closest to pattern in every ele-

ment of . Essentially, during this phase lengths of ele-

ments of decrease, i.e. text fragments are “shrunk.”

Thisis reasonable since the window (and consequently,

all elements of) is of maximum possible size of a near

duplicate of (see Lemma. 1). During “shrinking” for

every , all of its internal fragments are iterated

over, starting with fragments of length up to

fragments of length. The one that is closest to the

pattern in terms of edit distance is selected. If there are

3 Here and further we do not round the lengths of theintervals to

integers to save up space. Nevertheless, all proofs can be per-

formed with rounded values as well.

G

p
D g

p k g p
k

w = | |
w

pL
k

(), ≤ did p w k

1W dik

()= + − .2

di

1
1 (1)k p k

k

p
1W

1W

1W
p

∈2 1w W
∗p k

| |p
k

PROGRAMMING A
several such fragments, the longest one should be

taken. This phase results in the set W2.

At the phase 3 (filtering), duplicate elements in
are eliminated. They emerge at the previous phase

because can contain text fragments that differ by a
window shift of several symbols. Furthermore, ele-

Algorithm 1: Pattern based near duplicatesearch algorithm

Input data: – document,

 – pattern, – similarity measure

Result:
// Phase 1 (scanning)

1

2 for do
3 if then
4 add to

// Phase 2 (“shrinking”)

5

6 for do
7

8 for do
9 for do
10 if then
11

12 add to

// Phase 3 (filtering)

13

14 for do
15 if then
16 remove from

17

D
p k

R

← ∅1W

∀ : ∈ ∧ =1 1 1 ww w D w L

, ≤1d ()di diw p k

1w 1W

← ∅2W

∈ 1w W

←2'w w

∈l I

∀ : ⊆ ∧ =2 2 2w w w w l

, ,2 2Compare()'w w p

←2 2'w w

2'w 2W

←3 2Unique()W W

∈3 3w W

∃ ∈ : ⊂3 3 3 3' 'w W w w

3w 3W

← 3R W

2W

1W
ND COMPUTER SOFTWARE Vol. 45 No. 6 2019

INTERACTIVE NEAR DUPLICATE SEARCH 351
ments that are fully contained in other elements of

are filtered out. This phase results in the set which
is the output of the algorithm, i.e. the set R.

Let us describe the auxiliary functions used in

Algorithm 1. The function is used during
phase 2 to identify the text fragment which is closer to
the pattern in terms of edit distance. If the distance
from both fragments to the pattern is the same, the
longest fragment is selected:

The Unique function receives a collection of text
fragments, iterates over it and discards duplicate frag-
ments.

6.2. Algorithm Completeness

The criterion of completeness for our pattern based
near duplicate search algorithm is defined as follows.

The algorithm is complete if for arbitrary , ,

output of the algorithm , and for any near duplicate

group of fragment with similarity (see def. 2),
the following condition holds true:

(2)

where . This criterion can be

explained as follows: for any fragment of document D

that is a near duplicate of pattern , the set will con-
tain a text fragment that significantly intersects with
this near duplicate, allowing the user to easily recog-
nise this duplicate in the output. The ratio of the inter-
secting portion to the whole pattern is bounded from

below by the function. and for

larger values of . This is true since the

function increases with increasing – its derivative is

 and it is obviously positive for all <

. In practice, the best results are achieved for

: for these values , i.e. all ele-

ments of R intersect all near duplicates at least by half
of the pattern’s length. Note that the lower estimate

 is pessimistic: the experimental results
demonstrate a larger overlap of the output and the
near duplicates contained in the document. Let us
continue on to the completeness of theproposed algo-
rithm, proving several auxiliary propositions first.

2W
3W

Compare

p

, ,
, < ,⎧

⎪= , > ,⎨
⎪ > , = ,⎩

1 2

1 2

1 2

1 2 1 2

Compare()

true () ()

false () ()

() ()

w w p
d w p d w p
d w p d w p

w w d w p d w p

D ∈p D
R

G p k

∀ ∈ ∃ ∈ ∩ ≥ ,min: ()g G w R g w O k

()= −min

| | 1
() 3

2

pO k k
k

p R

min()O k () = ,min

1
0

3
O

k () >min 0O k
k

⎛ ⎞+⎜ ⎟
⎝ ⎠2

| | 1
3

2

p
k

1

3
≤ 1k

≥ 0.77k () >min

| |

2

pO k

min()O k
PROGRAMMING AND COMPUTER SOFTWARE Vol.
Lemma 1. Let be a near duplicate group of frag-

ment with similarity . Then

holds true.
Proof. Suppose is the archetype of group . Then

 and . Because and

, we have: and .

Therefore, and . Dividing these

inequalities by and respectively,

we get the required result.

Lemma 2. Let be a near duplicate group of frag-
ment with similarity . Then the following
holds true: .

Proof. Because and belong to the same near
duplicate group, they have the same archetype and can
be presented in the following way:

where is the archetype of group ,

 is the variative part of , and
is the variative part of g.

Let us introduce the following notations: vp =

, , . Then

according to (2), we have ⇒ ⇒
 ⇒ , and, likewise,

. Moreover, can be obtained from by

substituting for , i.e. d(g, p) ≤ ≤ (1 –

k)(|p| + |g|). According to lemma 1 we have .

Then |p| = (1 – k2)|p|.

Lemma 3. For any , , near dupli-
cate group of fragment with similarity (Definition. 3),
the criterion of completeness 2 is satisfied in respect to the
results of phase 1.

Proof. As mentioned above, the triangle inequality
is satisfied for longest common subsequence distance:

. According to lemma 2,

. We also know that . There-

fore, because we can obtain from by removing all

symbols that belong to , holds

true. But because and according to lemma 1, |g| ≥

, the following also holds true: – k|p|.

Therefore, = (1 –

k2). It is obvious that during the scanning on phase 1
there will be a state in which the window contains fr.

G

p k ∀ , ∈1 2g g G ≤ ≤1

2

| | 1

| |

gk
g k

A G
≤1k g A ≤2k g A ⊂ 1str()A g

⊂ 2str()A g ≤ ≤1 1k g A g ≤ ≤2 2| |k g A g
≤1 2| | | |k g g ≤2 1| | | |k g g

≤1 1k g g ≤2 2k g g

G
p k ∀ ∈g G

, ≤ − 2
() (1)d g p k p

p g

−

−

= … ,
= … ,
v v v v

v v v v

0 1 1 2 1

0 1 1 2 1

p p p p
N N N

g g g g
N N N

p I I I

g I I I

, …,1 2, NI I I G

, ,…v v v0 1 ,
p p p

N p , ,…v v v0 1 ,
g g g

N

,…v v v0 1 ,
p p p

N = ,…v v v v0 1 ,
g g g g

N = …1 2 NA I I I
≥| |/| |A p k − ≥v| | | | | |

pp p k

− ≥ v
pp p k − ≥ v(1)

pp k

− ≥ v(1)
gg k g p

v
p

i v
g
i +v v| | | |

g p

≤g k p
, ≤ − +() (1)(1)d g p k k

∈p D ∈ ,(1/ 3 1]k
G p k

, ≤ , + ,() () ()d fr p d fr g d g p
, ≤ − 2

() (1)d g p p k ⊆g fr
g fr

\fr g , ≤ −()d fr g fr g

= p
fr

k
| |k p − ≤ 1fr g p

k
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

, ≤ − + − 21
() 1d fr p p k k

k ()+ 1
1p

k

45 No. 6 2019

352 LUCIV et al.
Then, according to (1), . Therefore, the fol-
lowing holds true:

Since for any near duplicate there is an element of

 that does not only intersect with this duplicate, but

contains it completely, criterion 2 is satisfied for if

we consider it as the set .

Lemma 4. For any , and near
duplicate group of fragment with similarity (Defi-
nition. 3) the criterion of completeness 2 is satisfied in
respect to the output of phase 2.

Proof. We omit a formal proof due to its large size.
The main idea here is considering the worst case

where during “shrinking,” the length of ele-
ments is decreased to k|p|. Considering corner cases
(an element positioned in the center or right at the

ends of) allows us to confirm that the lemma holds
true.

Lemma 5. For any , and near
duplicate group of fragment with similarity (Defi-
nition. 3) the criterion of completeness 2 is satisfied in
respect to the output of phase 3.

Proof. Phase 3 consists of element deletion from
only. The intervals of the deleted elements are con-
tained in intervals of other elements. It is obvious that

if satisfied the criterion, then will satisfy it as
well.

Theorem 1. The criterion of completeness is satisfied
for any , , corresponding algorithm
output and any near duplicate group G of fragment p
with similarity k.

Proof. The output of phases 1–3 was proven to sat-
isfy the criterion 2 in lemmas 3–5.

6.3. Optimizing the Algorithm
The proposed algorithm turned out to be inade-

quate performance-wise: its run time exceeded one
hour when searching for patterns larger than 100 sym-
bols in documents of about 2 MB in size. Further-
more, the algorithm produced many false positives –
its output contained the same text fragments that were
insignificantly shifted relatively to each other. As the
result, a range of optimizations has been suggested.

Optimization 1 is applied during phase 1 (scanning).

It allows to reduce the number of calculations of , sig-
nificantly improving the run time of the algorithm. It
is based on the known Boyer-Moore algorithm, which
is intended for matching a pattern in a string [38]:
during the scan, a check is performed to see by how
many symbols the window can be shifted without skip-
ping the required result. Therefore, at each step of the

scan we check whether d(w, p) > (is the win-

∈ 1fr W

⎛ ⎞∀ ∈ : = , ⊆ ⇒ ∈ .⎜ ⎟
⎝ ⎠

1

p
g G fr g fr fr W

k

1W
1W

R

∈p D ∈ ,(1/ 3 1]k
G p k

∈1 1w W

1w

∈p D ∈ ,(1/ 3 1]k
G p k

2W

2W 3W

∈p D ∈ ,(1/ 3 1]k
R

d

+di 1k w
PROGRAMMING A
dow position) holds. If it is true, then we slide the win-

dow by symbols to the right. Other-

wise, we slide it by one symbol.

Optimization 2 is applied during phase 2 (“shrink-
ing”). It allows to reduce the number of computations

of as well. The approach is similar to the one used in
the previous optimization. During “shrinking” of a

text fragment , the window scans the fragment in a

symbol-by-symbol manner. At each step is

computed and, if necessary, its minimum value is

updated. If for the current window position ,

 > dmin + 1 holds true, slide the window to the

right by symbols. Otherwise, slide

it by one symbol. The value is updated at the
beginning of each iteration corresponding to the next
value of the sliding window width.

Optimization 3 is applied during phase 3 (filtering).

It allows to minimize the cardinality of . It is as fol-
lows: the set is divided into maximum subsets that are
transitively closed under intersection. Further, for

every such subset a fragment with the minimum

value of is selected, or if there are several such
fragments, the one with maximum length. All remain-
ing elements of the set are deleted.

Optimization 4 is applied during phase 3, extending

all text fragments of up to complete words. The
bounds of a text fragment can ignore the bounds of
words, i.e. incomplete words can be included into text
fragments. In order to addressthis, text fragments are
expanded to include these words fully. This helps to
decrease the number of false positives in the algo-
rithm’s output.

Optimization 5 is applied during phases 1 and 2. Its

purpose is reusing for the same strings and paral-

lelizing the “shrinking” of the elements of .

Let us show how these optimizations affect the
algorithm’s completeness.

Theorem 2. Optimizations 1, 2, 4, 5 preserve the com-
pleteness property.

Proof. Consider two strings that are results of con-

catenation: and , where and

 = d. We can easily show that . Using

this fact, it is easy to prove the completeness of optimi-
zation 1. The completeness of optimization 2 is proven
in the same way. The completeness of optimization 4
can not be doubted because it only extends the ele-
ments of the output. Finally, optimization 5 is com-
plete because it only considers the implementation of
the algorithm.

Note 1. Situations where optimization 3 does not
satisfy the criterion of completeness are possible, but
our experiments show that their number is insignifi-
cant in practice.

(), − di()/2d w p k

d

1w
, 2'()d p w

mind
2'w

, 2'()d p w
, −2 min'(())/2d p w d

mind

3W

3w
,3()d w p

3W

d
1W

=1s ab =2s bc =a c
,1 2()d s s + ≥a c d
ND COMPUTER SOFTWARE Vol. 45 No. 6 2019

INTERACTIVE NEAR DUPLICATE SEARCH 353
7. ALGORITHM COMPLEXITY

Document length , pattern length , the k
value, and the cardinality of the near duplicate group

of the pattern are all significant parameters that

influence the run time of the algorithm. Let us esti-
mate the algorithm’s complexity depending on these
parameters.

The average complexity of calculating d (i.e. edit dis-

tance) is [32]. Consequently, the average com-

plexity of phase 1 is proportional to and . During

phase 2 all of the internal fragments of each are
iterated over, and it is easy to show that their number

is proportional to . Furthermore, the cardinality of

the set is proportional to and . Finally, the

complexity of phase 2 is and . The com-

plexity of phase 3 operations is , but

because , the complexity of phase 3 is

 and . Optimizations 1

and 2 on average lead to “skips” during iteration, the

size of which is proportional to (and hence),

making the complexity of phases 1 and 2 and

 respectively. Therefore, with k = const the algo-

rithm’s run time can be estimated as , ,

and .

Theorem 3. The complexity of the algorithm with
fixed D and p is estimated as on average.

We omit the proof due to its large volume.

8. EVALUATION

Theoretical complexity estimates are not sufficient
for determining the real run time of the proposed algo-
rithm. These estimates were produced using certain
significant parameters of the algorithm independently
to simplify the proofs, while real complexity can
depend on their combinations. Another argument for
the necessity of experimental evaluation is the fact that
theoretical estimates do not provide the real value
intervals of these parameters. Finally, other properties
of the algorithm need to be evaluated as well.

We have conducted our experiments to answer the
following questions:

(i) what is the run time of the pattern matching
algorithm on real data;

(ii) how large are algorithm’s outputs having real
data as input.

The first question is important because the algo-
rithm is used in interactive mode, and therefore its run
time should not exceed several minutes. Considering
output volume, we have proven that our algorithm’s
output contains all existing near duplicates of a certain

D p

pG

2
2

()p
2p D

∈1 1w W

p

1W pG dik

()2 pG 2
4

()p
()∗2 2 2logW W

=2 1W W
()∗2 logp pG G ()∗2 logp p

dik | |p
()2 p

2
3

()p

()2 D 2
3

()p
()∗2 logp pG G

2
4

(1/)k
PROGRAMMING AND COMPUTER SOFTWARE Vol.
pattern. It is, however, unclear, how exactly large are
the real outputs of the algorithm – outputs that con-
tain over 100 elements become more or less unfeasible
for human analysis. In turn, output volume is affected
by the number of false positive matches and the num-
ber of near duplicates in the document

We have experimented on 19 industrial documents
both in Russian and English (described in reference
[16]). The experiments were conducted on a computer
with the following specifications: Intel Core i7 2600,
3.4 GHz, 16 GB RAM. The documents were con-
verted into “flat text” (UTF-8 encoding) with Pandoc
[39]. After the convertation, the size of the documents
ranged from 0.04 MB to 2.5 MB (0.75 MB on aver-
age). We are inclined to think that these numbers are

realistic for . However, we should note that it is nec-
essary to create a more representative selection of dif-
ferent documentation types in order to obtain more
precise estimates.

The experiments were conducted as follows. We
have run the algorithm for patterns of length ranging
from 50 to 1000 symbols with a 50-symbol step.
A 1000-symbol fragment is about 25% of a page of a
docx document, i.e. it is a large fragment, and follow-
ing our experiments, duplicates are significantly
smaller in general. We have iterated the similarity
measure value k from 0.6 to 1 with 0.1 step for each
selected pattern in each document. We have selected
the pattern in the following way. Having a fixed pattern
length, we followed our technique and selected the
“warmest” area in the document of this length, calcu-
lating it automatically as a fragment where the follow-

ing expression reaches its maximum value: .

In this expression is a token of fragment and
is its temperature. The sum is calculated over all tokens
of the fragment, including possibly incomplete left-
most and rightmost tokens.

Analyzing the data obtained from the experiments
to answer the question whether the algorithm’s run
time is suitable for interactivity, we have established
the following: in 38% of cases the algorithm ran for
less than 5 s, in 78% cases – less than 30 s, in 90% of
cases – less than 2 min. These run times are fairly ade-
quate for interactive mode.

We have obtained the following data on the output
volumes of our algorithm: 84% of outputs contained
less than 100 elements, 5% outputs – from 100 to 200
elements, 5.6% – from 200 to 600 elements, 5.4% –
from 600 to 1000 elements. Thus, the majority of near
duplicate groups in software documentation are rela-
tively small (containing up to 100 elements), which
follows from Theorem 1 and our experimental results.

CONCLUSIONS

In this study we have presented an interactive near
duplicate search process for software documentation.

| |D

∈∑ ()
t fr

h t
t fr ()h t
45 No. 6 2019

354 LUCIV et al.
This process solves the problem of meaningful
extraction of near duplicates by involving the user,
who can use an automatically generated heat map of
exact duplicates to detect the most probable occur-
rences of near duplicates. We have created a pattern-
based near duplicate search algorithm and provided
optimizations for it. We have proven the completeness
of the algorithm, meaning that all near duplicates con-
tained in the document are present in the algorithm’s
output. More precisely, duplicates located in the doc-
ument significantly intersect with particular elements
of the output, and this is why the user can identify
them with ease. Our process allows user to manually
edit their bounds and to include them in the output in
full. We present complexity estimates for our algo-
rithm as well as experimental results. These results
suggest that duplicate groups in software documenta-
tion generally do not exceed 100 elements, and the
algorithm itself performs adequately for practical use.

In the future, we plan to study different types of
software documentation in detail using our algorithm
and experiment model (focusing on API documenta-
tion first). We also intend to thoroughly examine the
behavior of our algorithm with varying input parame-
ters (pattern length and similarity measure). Finally, we
plan to switch to automatic methods of detecting mean-
ingful duplicates via machine learning. A detailed anal-
ysis of different types of near duplicates in different
software documentation types is required as well.
Other fruitful areas for future work are integration of
documentation reuse (in the context of requirement
development) with automatic test development [40, 41],
and visualization of duplicate structure using diagrams
[42].

FUNDING

This work is partially supported by RFBR grant

16-01-00304.

REFERENCES

1. Brooks, F.P., The Mythical Man-Month: Essays on Soft-
ware Engineering, Addison-Wesley, 1975.

2. Parnas, D.L., Precise documentation: The key to Better
Software, The Future of Software Engineering, Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 125–
148.

3. Bassett, P.G., Framing Software Reuse: Lessons from the
Real World, Upper Saddle River, NJ, USA: Prentice-
Hall, Inc., 1997.

4. Jarzabek, S. and Pettersson, U., Research journey to-
wards industrial application of reuse technique, ICSE,
2006, pp. 608–611.

5. Irshad, M., Petersen, K., and Poulding, S.M., A sys-
tematic literature review of software requirements reuse
approaches, Inform. Software Technol., 2018, vol. 93,
pp. 223–245.

6. Horie, M. and Chiba, S., Tool support for crosscutting
concerns of API documentation, Proceedings of the 9th
PROGRAMMING A
International Conference on Aspect-Oriented Software
Development, New York, NY, USA: ACM, 2010,
pp. 97–108.

7. Oumaziz, M.A., Charpentier, A., Falleri, J.-R., and
Blanc, X., Documentation reuse: Hot or not? An em-
pirical study, Mastering Scale and Complexity in Soft-
ware Reuse: 16th International Conference on Software
Reuse, Springer, 2017, pp. 12–27.

8. Koznov, D.V. and Romanovsky, K.Yu., DocLine: A
method for software product lines documentation de-
velopment, Programming and Computer Software, 2008,
vol. 34, no. 4, pp. 216–224.

9. Romanovsky, K., Koznov, D., and Minchin, L., Re-
factoring the documentation of Software Product
Lines, Lect. Notes Computer Science, Berlin, Heidel-
berg: Springer-Verlag, 2011, vol. 4980, pp. 158–170.

10. Jarzabek, S. and Dan, D., Documentation Reuse: Man-
aging Similar Documents, FedCSIS, 2017, pp. 1325–
1334.

11. Juergens, E., Deissenboeck, F., Feilkas, M., Hummel, B.,
Schaetz, B., Wagner, S., Domann, C., and Streit, J.,
Can clone detection support quality assessments of re-
quirements specifications?, Proceedings of ACM/IEEE
32nd International Conference on Software Engineering,
2010, vol. 2, pp. 79–88.

12. Nosál’, M. and Porubän, J., Reusable software docu-
mentation with phrase annotations, Central Eur. J.
Comp. Sci., 2014, vol. 4, no. 4, pp. 242–258.

13. Nosál’, M. and Porubän, J., Preliminary report on em-
pirical study of repeated fragments in internal docu-
mentation, Proceedings of Federated Conference on
Computer Science and Information Systems, 2016,
pp. 1573–1576.

14. Wingkvist, A., Lowe, W., Ericsson, M., and Lincke, R.,
Analysis and visualization of information quality of
technical documentation, Proceedings of the 4th Euro-
pean Conference on Information Management and Eval-
uation, 2010, pp. 388–396.

15. Koznov, D., Luciv, D., Basit, H.A., Lieh, O.E., and
Smirnov, M., Clone Detection in Reuse of Software
Technical Documentation, International Andrei Ershov
Memorial Conference on Perspectives of System Informat-
ics (2015), Springer Nature, 2016, vol. 9609 of Lecture
Notes in Computer Science, pp. 170–185.

16. Luciv, D.V., Koznov, D.V., Chernishev, G.A., Terek-
hov, A.N., Romanovsky, K.Yu., and Grigoriev, D.A.,
Detecting near duplicates in software documentation,
Programming and Comput. Software, 2018, vol. 44, no. 5.

17. Koznov, D.V., Luciv, D.V., and Chernishev, G.A., Du-
plicate management in software documentation main-
tenance, Proceedings of V International Conference Actu-
al Problems of System and Software Engineering,
vol.1989: CEUR Workshop Proceedings, 2017, pp. 195–
201.

18. Duplicate Finder.
http://www.math.spbu.ru/user/kromanovsky/docline
/index.html.

19. Luciv, D.V., Koznov, D.V., Chernishev, G.A., Basit, H.A.,
Romanovsky, K.Yu., and Terekhov, A.N., Poster: Du-
plicate finder toolkit, Proceedings of the International
Conference on Software Engineering (ICSE 2018), 2018,
pp. 171–172.
ND COMPUTER SOFTWARE Vol. 45 No. 6 2019

INTERACTIVE NEAR DUPLICATE SEARCH 355
20. Basit, H.A., Puglisi, S.J., Smyth, W.F., Turpin, A., and
Jarzabek, S., Efficient token based clone detection with
flexible tokenization, Proceedings of the 6th Joint Meet-
ing on European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of
Software Engineering: Companion Papers, New York,
NY, USA: 2007, pp. 513–516.

21. Rago, A., Marcos, C., and Diaz-Pace, J.A., Identifying
duplicate functionality in textual use cases by aligning
semantic actions, Software and Systems Modeling, 2016,
vol. 15, no. 2, pp. 579–603.

22. Ukkonen, E., Finding approximate patterns in strings,
J. Algorithms, 1985, vol. 6, no. 1, pp. 132–137.

23. Broder, A.Z., On the resemblance and containment of
documents, Compression and Complexity of Sequences
1997, Proceedings, IEEE, 1997, pp. 21–29.

24. Wu, S. and Manber, U., Fast Text Searching: Allowing
Errors, Commun. ACM, 1992, vol. 35, no. 10, pp. 83–91.

25. Landau, G.M. and Vishkin, U., Fast string matching
with k differences, J. Comput. System Sci. 1988, vol. 37,
no. 1, pp. 63–78.

26. Myers, G., A Fast bit-vector algorithm for approximate
string matching based on dynamic programming, J.
ACM, 1999, vol. 46, no. 3, pp. 395–415.

27. Levenshtein, V., Binary codes capable of correcting
spurious insertions and deletions of ones, Problems In-
form. Transmission, 1965, vol. 1, pp. 8–17.

28. Smyth, W., Computing Patterns in Strings, Addison-
Wesley, 2003.

29. Bergroth, L., Hakonen, H., and Raita, T., A survey of
longest common subsequence algorithms, String Pro-
cessing and Information Retrieval, 2000 (SPIRE 2000),
Proceedings, Seventh International Symposium on, 2000,
pp. 39–48.

30. Leskovec, J., Rajaraman, A., and Ullman, J.D., Mining
of Massive Datasets, Cambridge: Cambridge Univ.
Press, 2014.

31. Gusfield, D., Algorithms on Strings, Trees, and Sequenc-
es, Cambridge: Cambridge Univ. Press, 1997.

32. Ratcliff, J.W. and Metzener, D.E., Pattern matching:
The Gestalt approach, Dr. Dobb’s J., 1988, vol. 13,
no. 7, pp. 46–72.

33. Abboud, A., Backurs, A., and Williams, V.V., Tight
hardness results for LCS and other sequence similarity
measures, Foundations of Computer Science (FOCS),
2015 IEEE 56th Annual Symposium on, 2015, pp. 59–78.

34. Python DiffLib module.
https:// docs.python.org/3/library/diff lib.html.

35. Abouelhoda, M.I., Kurtz, S., and Ohlebusch, E., Re-
placing suffix trees with enhanced suffix arrays, J. Dis-
crete Algorithms, 2004, vol. 2, no. 1, pp. 53–86.

36. Špakov, O. and Miniotas, D., Visualization of eye gaze
data using heat maps, Elektronika ir elektrotechnika,
2007, pp. 55–58.

37. Luciv, D.V., Detecting Near Duplicates in Software
Documentation, 2017. arXiv: 1711.04705.

38. Boyer, R.S. and Moore, J.S., A fast string searching al-
gorithm, Commun. ACM, 1977, vol. 20, no. 10,
pp. 762–772.

39. Pandoc: A Universal Document Converter.
https://pandoc.org/.

40. Drobintsev, P. D. A formal approach to test scenarios gen-
eration based on guides / P. D. Drobintsev, V. P. Kotl-
yarov, A. A. Letichevsky // Automatic Control and
Computer Sciences, 2014, Dec., vol. 48, no. 7, pp. 415–
423.

41. Pakulin, N.V. and Tugaenko, A.N., Model-based test-
ing of Internet Mail Protocols, Proc. Inst. System Pro-
gramming, 2011, vol. 20, pp. 125–141.

42. Gorovoy, V.A., Bolotnikova, E.S., and Gavrilova, T.A.,
To a method of evaluating ontologies, J. Comput. Sys-
tems Sci. Int., 2011, vol. 50, no. 3, pp. 448–461.
PROGRAMMING AND COMPUTER SOFTWARE Vol. 45 No. 6 2019

	1. INTRODUCTION
	2. RELATED WORK
	3. BACKGROUND
	3.1. Edit Distance
	3.2. Detecting Exact Duplicates with Clone Miner

	4. THE PROCESS
	5. DEFINING A NEAR DUPLICATE GROUP
	6. PATTERN BASED NEAR DUPLICATE SEARCH ALGORITHM
	6.1. Algorithm De3scription
	6.2. Algorithm Completeness
	6.3. Optimizing the Algorithm

	7. ALGORITHM COMPLEXITY
	8. EVALUATION
	CONCLUSIONS
	REFERENCES

