
ISSN 0361-7688, Programming and Computer Software, 2018, Vol. 44, No. 5, pp. 335–343. © Pleiades Publishing, Ltd., 2018.
Original Russian Text © D.V. Luciv, D.V. Koznov, G.A. Chernishev, A.N. Terekhov, K.Yu. Romanovsky, D.A. Grigoriev, 2018, published in Programmirovanie, 2018, Vol. 44,
No. 5.
Detecting Near Duplicates in Software Documentation1

D. V. Luciva,*, D. V. Koznova,**, G. A. Chernisheva,***, A. N. Terekhova,****,
K. Yu. Romanovskya,*****, and D. A. Grigorieva,******

aSaint Petersburg State University, St. Petersburg, 199034 Russia
*e-mail: d.lutsiv@spbu.ru

**e-mail: d.koznov@spbu.ru
***e-mail: g.chernyshev@spbu.ru
****e-mail: a.terekhov@spbu.ru

*****e-mail: k.romanovsky@spbu.ru
******e-mail: d.a.grigoriev@spbu.ru

Received August 8, 2017

Abstract—Contemporary software documentation is as complicated as the software itself. During its lifecycle,
the documentation accumulates a lot of “near duplicate” fragments, i.e. chunks of text that were copied from
a single source and were later modified in different ways. Such near duplicates decrease documentation qual-
ity and thus hamper its further utilization. At the same time, they are hard to detect manually due to their
fuzzy nature. In this paper we give a formal definition of near duplicates and present an algorithm for their
detection in software documents. This algorithm is based on the exact software clone detection approach: the
software clone detection tool Clone Miner was adapted to detect exact duplicates in documents. Then, our
algorithm uses these exact duplicates to construct near ones. We evaluate the proposed algorithm using the
documentation of 19 open source and commercial projects. Our evaluation is very comprehensive – it covers
various documentation types: design and requirement specifications, programming guides and API docu-
mentation, user manuals. Overall, the evaluation shows that all kinds of software documentation contain a
significant number of both exact and near duplicates. Next, we report on the performed manual analysis of
the detected near duplicates for the Linux Kernel Documentation. We present both quantative and qualitative
results of this analysis, demonstrate algorithm strengths and weaknesses, and discuss the benefits of duplicate
management in software documents.

Keywords: software documentation, near duplicates, documentation reuse, software clone detection
DOI: 10.1134/S0361768818050079

1. INTRODUCTION
Every year software is becoming increasingly more

complex and extensive, and so does software docu-
mentation. During the software life cycle documenta-
tion tends to accumulate a lot of duplicates due to the
copy and paste pattern. At first, some text fragment is
copied several times, then each copy is modified, pos-
sibly in its own way. Thus, different copies of initially
similar fragments become “near duplicates”. Depend-
ing on the document type [1], duplicates can be either
desired or not, but in any case duplicates increase doc-
umentation complexity and thus, maintenance and
authoring costs [2].

Textual duplicates in software documentation,
both exact and near ones, are extensively studied [2–5].
However, there are no methods for detection of near
duplicates, only for exact ones and mainly using soft-
ware clone detection techniques [2, 3, 6]. In our pre-

vious studies [7, 8] we presented a near duplicate
detection approach. Its core idea is to uncover near
duplicates and then to apply the reuse techniques
described in our earlier studies [4, 5]. Clone detection
tool Clone Miner [9] was adapted for detection of
exact duplicates in documents, then near duplicates
were extracted as combinations of exact duplicates.
However, only near duplicates with one variation
point were considered. In other words, the approach
can detect only near duplicates that consist of two
exact duplicates with a single chunk of variable text
between them: .

In this paper we give the formal definition of near
duplicates with an arbitrary number of variation points,
exhibiting the following pattern:

 … . Our definition is
the formalized version of the definition given in the ref-
erence [10]. We also present a generalization of the
algorithm described in [7, 8]. The algorithm is imple-
mented in the Documentation Refactoring Toolkit1 The article is published in the original.

1exact 1variable 2exact

1exact 1variable 2exact
2variable 3exact −1nvariable nexact
335

336 LUCIV et al.
[11], which is a part of the DocLine project [4]. In this
paper, an evaluation of the proposed algorithm is also
presented. The documentation of 19 open source and
commercial projects is used. The results of the detailed
manual analysis of the detected near duplicates for the
Linux Kernel Documentation [12] are reported.

2. RELATED WORK
Let us consider how near duplicates are employed

in documentation-oriented software engineering
research. Horie et al. [13] consider the problem of text
fragment duplicates in Java API documentation. The
authors introduce a notion of crosscutting concern,
which is essentially a textual duplicate appearing in
documentation. The authors present a tool named
CommentWeaver, which provides several mechanisms
for modularization of the API documentation. It is
implemented as an extention of Javadoc tool, and pro-
vides new tags for controlling reusable text fragments.
However, near duplicates are not considered, facilities
for duplicate detection are not provided. Nosál and
Porubän [14] extend the approach from [13] by intro-
ducing near duplicates. In this study the notion of
documentation phrase is used to denote the near
duplicate. Parametrization is used to define variative
parts of duplicates, similarly to our approach [4, 5].
However, the authors left the problem of near dupli-
cate detection untouched.

In [3] Nosál and Porubän present the results of a
case study in which they searched for exact duplicates
in internal documentation (source code comments) of
an open source project set. They used a modified
copy/paste detection tool, which was originally devel-
oped for code analysis and found considerable number
of text duplicates. However, near duplicates were not
considered in this paper.

Wingkvist et al. adapted a clone detection tool to
measure the document uniqueness in a collection [6].
The authors used found duplicates for documentation
quality estimation. However, they did not address near
duplicate detection.

The work of Juergens et al. [2] is the closest one to
our research and presents a case study for analyzing
redundancy in requirement specifications. The
authors analyze 28 industrial documents. At the first
step, they found duplicates using a clone detection
tool. Then, the authors filtered the found duplicates by
manually removing false positives and performed a
classification of the results. They report that the aver-
age duplicate coverage of documents they analyzed is
13.6%: some documents have a low coverage (0.9%,
0.7%, and even 0%), but there are ones that have a
high coverage (35, 51.1, 71.6%). Next, the authors dis-
cuss how to use discovered duplicates and how to
detect related duplicates in the source code. The
impact of duplicates on the document reading process
PROGRAMMING A
is also studied. Furthermore, the authors propose a
classification of meaningful duplicates and false posi-
tive duplicates. However, it should be noted that they
consider only requirement specifications and ignore
other kinds of software documentation. Also, they do
not use near duplicates.

Oumaziz et al. [15] analyze the API documentation
of several well-known projects that was generated
using the Javadoc technology. Their approach is based
on employing a software clone detector for detecting
duplicates in tags and methods. The authors provide a
classification of duplicate types and explore the possi-
bility of documentation reuse. However, near dupli-
cates are not considered in this work, although it is
mentioned that they are very common and important
in practical tasks.

Rago et al. [16] apply natural language processing
methods for near duplicate detection in textual
descriptions of use cases. However, it should be noted
that their work is dedicated to a rather peculiar type of
requirement specifications that is rarely used in the
industry. It is unclear how to apply this method to
other types of software documentation.

Duplicate detection algorithms are developed in
other research areas as well. The information retrieval
community considers a number of tasks related to
detection of near duplicates: detection of similar doc-
uments on the Internet [17, 18], detection of (local)
reuse [19, 20], extraction of textual templates in web
page collections [21, 22]. The plagiarism detection
community is also studying duplicates in detail, and,
in particular, near duplicates in documents [23–25].
However, these approaches are aimed at detecting
similarity of whole documents and attaining high per-
formance during processing large collections.

Traditionally, source code clone detectors are used
for duplicate detection in software documentation [2,
3, 6, 15]. Let us note that the area of code clone detec-
tion has near duplicate detection tools. SourcererCC
itesajnani2016 makes finding duplicate code frag-
ments possible using the static bag-of-tokens strategy,
which is insensitive to insignificant differences in these
fragments. DECKARD [26] computes characteristic
vectors of code for approximation of the structure of
abstract syntax trees in an Euclidean space. NICAD
[28] is a tool for detecting near duplicates for pretty-
printing and transformation/filtering of source code.
Other similar works include [29, 30]. It should be
noted that such methods are not applicable for text
documents since they employ syntactic code analysis.
Concerning software documentation, these methods
are used solely for exact duplicate detection, and only
with the condition that they employ a token-based
search. Nevertheless, using code clone detection as a
base method for duplicate detection is appealing due
to the following reasons:

• there is a large variety of readily available tools,
ND COMPUTER SOFTWARE Vol. 44 No. 5 2018

DETECTING NEAR DUPLICATES 337
• the possibility of adding near duplicate detection,

• this approach is consistent with the arche-
type/delta concept [10] that we use for formalizing the
definition of a near duplicate.

Following [16, 31], let us note that natural language
processing methods are promising for our task. The
following techniques could be useful:

• the N-gram model [31],
•topic modeling (allows to attribute text fragments

to a particular area [32]),
• extraction of facts from free-form texts [33],
• text normalization techniques.
The application of these methods to our task is

going to be the subject of our future research.

3. EXACT DUPLICATE DETECTION
AND CLONE MINER

Not only documentation, but also software itself is
often developed with a lot of copy/pasted information.
To cope with duplicates in the source code, software
clone detection methods are used. This area is quite
mature; a systematic review of clone detection meth-
ods and tools can be found in [34]. In this paper, the
Clone Miner [9] software clone detection tool is used
to detect exact duplicates in software documentation.
Clone Miner is a token-based source code clone
detector. A token in the context of text documents is a
single word separated from other words by some sep-
arator: ‘.’, ‘(’, ‘)’, etc. For example, the following text
fragment consists of 2 tokens: “FM registers”. Clone
Miner considers input text as an ordered collection of
lexical tokens and applies suffix array-based string
matching algorithms [35] to retrieve the repeated parts
(clones). In this study we use the Clone Miner tool.
We have selected it for its simplicity and its ability to be
easily integrated with other tools using a command
line interface.

4. NEAR DUPLICATE DEFINITION

Let us define the terms necessary for describing the
proposed algorithm. We consider document D as a
sequence of symbols. Any symbol of D has a coordi-
nate corresponding to its offset from the beginning of
the document, and this coordinate is a number
belonging to interval, where is
the number of symbols in D.

Definition 1. For D we define a text fragment as an
occurrence of some text substring in D. Hence, each
text fragment has a corresponding integer interval

, where b is the coordinate of its first symbol and
e is the coordinate of its last symbol. For text fragment
g of document D, we say that .

,[1 ()]length D ()length D

,[]b e

∈g D
PROGRAMMING AND COMPUTER SOFTWARE Vol.
Let us introduce the following sets: D* is a set of all
text fragments of D, is a set of all integer intervals
within interval , is a set of all strings of D.

Also, let us introduce the following notations:

• is a function that takes text frag-
ment g and returns its interval.

• is a function that takes text
fragment g and returns its text.

• is a function that takes interval I
and returns corresponding text fragment.

• is a function that
takes interval and returns its length as

. For simplicity, we will use notion
instead of .

• For any we consider their intersection
 as intersection of corresponding intervals

, and implies .
• We define the binary predicate on

, which is true for text fragments , iff

, when .
Definition 2. Let us consider a set G of text fragments of

D such that = =
. We name those fragments as exact duplicates and G

as exact duplicate group or exact group. We also denote
number of elements in G as .

Definition 3. For ordered set of exact duplicate
groups , we say that it forms variational group

 when the following conditions are satis-
fied:

1. .
2. Text fragments having similar positions in differ-

ent groups, occur in the same order in document text:
 , and

We also say that for any of this set .
Note 1. According to condition 2 of definition 3,

, ⇒ .
Note 2. When and VG' =

, are variational groups, =
 is also a variational group in case

when is satisfies definition3.
For example, suppose that we have VG =

 and each of consists of three clones

. Then, these clones appear in the text in

DI
,[1 ()]length D DS

: →[] * Dg D I

: →() * Dstr g D S

: → *DI I D

, : → ,[] [0 ()]Db e I length D
= ,[] []g b e

= − +[] 1g e b g
[]g

, ∈1 2g g D
∩1 2g g
∩1 2[] []g g ⊂1 2g g ⊂1 2[] []g g

Before
×* *D D , ∈1 2g g D

<1 2e b = , ,1 1 1[] []g b e = ,2 2 2[] []g b e

∀ , ∈1 2g g G 1(()str g ∧ ∩2 1 2()) (str g g g
/0)

#G

, ,1 NG … G
, ,1 NG … G

= =1 N#G … #G

∀ ∈k
i ig G ∀ ∈k

j jg G < ⇔ ,(() ())k k
i ji j Before g g

+∀ ∈ , , − , 1
1{1 1} ().k k

Nk … N Before g g

kG ∈kG VG

∀ ∈k
i ig G ∀ ∈k

j jg G ≠(i j ∩ = /0)k k
i jg g

= , ,1 NVG G … G

〈 , , 〉1' 'MG … G , 'VG VG
〈 , , , , , 〉1 1' 'N MG … G G … G

, ,1 2 3G G G iG

, ∈ , ,{1 2 3}k
ig i
44 No. 5 2018

338 LUCIV et al.
the following order: …… ……
. Next, it should be possible to compute

the distance between variations or exact duplicate
groups. This is required to support group merging
inside our algorithm which selects several closest
groups to form a new one. Thus, a distance function
should be defined.

Definition 4. Distance between text fragments for
any is defined as follows:

(1)

where and .
Definition 5. Distance between exact groups and

, having , is defined as follows:

(2)

Definition 6. Distance between variational groups
 and , when there are =

#G2, is defined as follows:

(3)

Definition 7. Length of exact group G is defined as

follows: = , where ,

[gk] = .
Definition 8. Length of variational group VG =

 is defined as follows:

(4)

Definition 9. Near duplicate group is such a varia-
tional group that satisfies following condi-
tion for :

(5)

This definition is constructed according to the near
duplicate concept from [36]: variational part of near
duplicates with similar information (delta) should not
exceed 15% of their exact duplicate (archetype) part.

Note 3. An exact group G can be considered as a
variational one formed by itself: .

Definition 10. Consider near duplicate group
, where and are exact groups. We assume

that this group contains a single extension point, and the
text fragments contained in positions are
called fextension point values. In the general case, a

1 1 1
1 2 3g … g … g 2 2 2

1 2 3g … g … g
3 3 3
1 2 3g … g … g

, ∈1 2g g D

⎧ , ∩ ≠ ,/
⎪

, = − + , , ,⎨
⎪ − + , , ,⎩

1 2

1 2 2 1 1 2

1 2 2 1

0 0

() 1 ()

1 ()

g g

dist g g b e Before g g

b e Before g g

= ,1 1 1[] []g b e = ,2 2 2[] []g b e

1G
2G =1 2#G #G

∈ , ,
, = ,

1
1 2 1 2{1 }

() max ().k k

k … #G
dist G G dist g g

1VG 2VG ∈ ,1 1G VG ∈ :2 2 1G VG #G

∈ , ∈
, = ,

1 1 2 2
1 2 1 2() max ().

G VG G VG
dist VG VG dist G G

()length G
=

− +∑ 1
(1)

#G k k

k
e b ∈kg G

,[]k kb e

, ,1 NG … G

=
= ∑

1
() ().

N

i
i

length VG length G

, ,1 NG … G
∀ ∈ , , 1{1 }k … #G

−

+
= =

, ≤ . ∗ .∑ ∑
1

1
1 1

() 0 15
N N

k k k
i i i

i i

dist g g g

G

,1 2G G 1G 2G

+ , −1 2[1 1]k ke b
PROGRAMMING A
near duplicate group has extension
points.

Definition 11. Consider two near duplicate groups
 and . Suppose that they

form a variational group or
, which in turn is also a near

duplicate group. In this case, we call G and G' nearby
groups.

Definition 12. Nearby duplicates are duplicates
belonging to nearby groups.

Note 4. Due to remark 3, definition 12 is applicable
to both near and exact duplicates.

5. NEAR DUPLICATE DETECTION
ALGORITHM

The algorithm that constructs the set of near dupli-
cate groups () is presented below. Its input is the
set of exact duplicate groups () belonging to doc-
ument D. It employs an interval tree — a data structure
whose purpose is to quickly locate intervals that inter-
sect with a given interval. Initially, the set is cre-
ated using the Clone Miner tool. The core idea of our
algorithm is to repeatedly find and merge nearby exact
groups from . At each step, the resulting near
duplicate groups are added to . Let us consider
this algorithm in detail.

Algorithm 1: Near duplicate groups construction

Input data:
Result:

1
2
3 repeat
4
5 foreach G ∈ SetG ∪ SetV G do
6 SetCand ← NearBy(G)
7 if then
8
9

10 if then
11
12 else
13
14 end if
15 end if
16 end foreach
17
18 until
19

, ,1 NG … G − 1N

= , ,1 nG G … G = , ,1' '' mG G … G
〈 , , , , , 〉1 1' 'n mG … G G … G

〈 , , , , , 〉1 1' 'n mG … G G … G

SetVG
SetG

SetG

SetG
SetVG

SetG
SetVG
← /0SetVG
()Initiate

← /0SetNew

≠ /0SetCand
← ,' ()G GetClosest G SetCand

,(')Remove G G
,(')Before G G
← ∪ ,{ ' }SetNew SetNew G G

← ∪ ,{ ' }SetNew SetNew G G

,()Join SetVG SetNew
≠ /0SetNew

← ∪SetVG SetVG SetG
ND COMPUTER SOFTWARE Vol. 44 No. 5 2018

DETECTING NEAR DUPLICATES 339
The initial interval tree for is constructed
using the function (line 2). The core part of
the algorithm is a loop in which new near duplicate
groups are constructed (lines 3–18). This loop repeats
until we can construct at least one near duplicate
group, i.e. the set of newly constructed near duplicate
groups () is not empty (line 18). Inside of this
loop, the algorithm cycles through all groups of

. For each of them, the func-
tion returns the set of nearby groups (lines 5, 6),
which is then used for constructing near duplicate
groups. Later, we will discuss this function in more
detail and prove its correctness, i.e. that it actually
returns groups that are close to G. Next, the closest
group to G, denoted , is selected from (line 8)
and a variational group or is created.
This group is added into (lines 10–14). Since
G and G' are merged and therefore cease to exist as
independent entities, they are deleted from and

 by the function (line 9). Next, the
function adds to (line 17). It is essential
to note that the and functions perform
some auxiliary actions described below.

In the end of the algorithm is added to
. The result – – is presented as the algo-

rithm’s output. This step is required in order for the
output to contain not only near duplicate groups, but
also exact duplicate groups which havenot been used
for creation of near duplicate ones (line 19).

Let us describe the functions employed in this algo-
rithm.

The function builds the interval tree. The
idea of this data structure is the following.

Suppose we have n natural number intervals, where
 is the minimum and is the maximum value of all

interval endpoints, and m is the midpoint of .
The intervals are divided into three groups: fully
located to the left of m, fully located to the right of m,
and intervals containing m. The current node of the
interval tree stores the last interval group and refer-
ences to its left and right childnodes containing the
intervals to the left and to the right of m respectively.
This procedure is repeated for each child node. Fur-
ther details regarding the construction of an interval
tree can be found in [37, 38].

In this study, we build our interval tree from the
extended intervals that correspond to the exact dupli-
cates found by CloneMiner. These extended intervals
are obtained as follows: original intervals belonging to
exact duplicates are enlarged by 15%. For example, if

 is the initial interval, then an extended one is
, e + . We will

denotethe extended interval that corresponds to the
exact duplicate g as . We also modify our interval
tree as follows: each stored interval keeps the reference
to the corresponding exact duplicate group.

SetG
()Initiate

SetNew

∪SetG SetVG NearBy
SetCand

'G SetCand
, 'G G ,'G G

SetNew

SetG
SetVG Remove Join

SetNew SetVG
Remove Join

SetG
SetVG SetVG

()Initiate

1b ne
,1[]nb e

,[]b e
− . ∗ − +[0 15 (1)b e b . ∗ − +0 15 (1)]e b

�g
PROGRAMMING AND COMPUTER SOFTWARE Vol.
The function removes groups from sets
and their intervals from the interval tree. The interval
deletion algorithm is described in references [37, 38].

The function, in addition to the operations
described above, adds intervals of the newly created
near duplicate group to the interval
tree. The standard insertion algorithm described in
references [37, 38] is used. Extended intervals added to
the tree of each near duplicate , where

, have the form of ,

where = – . We

will denote this extended interval of (now, a near
duplicate) as as well.

The function selects nearby groups for
some group G (its parameter). To do this, for each text
fragment from G a collection of intervals that intersect
with its interval is extracted. Text fragments that corre-
spond to these intervals turn out to be neighboring to the
initial fragment, i.e. for them, condition (5) is satisfied.
The retrieval is done using the interval tree search
algorithm [37, 38]. We construct the set, which
contains groups that are expected to be nearby to G:

(6)

That is, the set consists of groups that contain
at least one duplicate that is close to at least one dupli-
cate from G. Then, only the groups that can form a
variational group with G are selected and placed into
the set:

(7)

Finally, the set (the function’s output)
is created. The only groups placed in this set are those
from whose all elements are close to correspond-
ing elements of G:

(8)

Theorem 1. Suggested algorithm detects near dupli-
cate groups that conform to definition 9.

It is easy to show by construction of that
for some group G it returns the set of its nearby groups
(see definition 11). That is, each of these groups can be
used to form a near duplicate group with G. Then for
the set the algorithm selects the group closest to G and
constructs a new near duplicate group. The correct-
ness of all intermediate sets and other used functions is
immediate from their construction methods.

Remove

Join

= , ,1 NG G … G

= ,...,1()k k k
Ng g g

∈ , , 1{1 }k … #G − , +1[]k k k k
Nb x e x

kx
=

. ∗∑ 1
0 15

N k
ii

g
−

+=
,∑

1
11

()
N k k

i ii
dist g g

kg
� kg

NearBy

1GL

= | ∈ ∪
∧ ∃ ∈ , ∈ : ∩ ≠ ./� �

1() { ' (')
' ' ' 0

GL G G G SetG SetVG
g G g G g g

1GL

2GL

= | ∈ ∧ ,
, .

2 1() { ' ' ('
or ' is variational group)}
GL G G G GL G G

G G

3GL NearBy

2GL

= | ∈
∧ ∀ ∈ , , : ∩ ≠ /� �

3 2() { ' '

{1 } ' 0}.k k

GL G G G GL

k … #G g g

NearBy
44 No. 5 2018

340 LUCIV et al.

Table 1. Near-duplicate groups detected

Document Size, Kb Time, S Total near
dup groups

Exact duplicate
groups, %

1-ext. pt.
groups, %

2-ext. pt.
groups, %

3-ext. pt.
groups, %

1 892 46 1291 93.9 5.1 0.9 0.2
2 2924 188 6056 93.3 5.3 0.9 0.2
3 1810 134 4220 95.9 3.4 0.5 0.2
4 686 32 1500 96.5 3.3 0.2 0.1
5 1311 110 4688 95.9 3.3 0.5 0.0
6 3136 321 6587 93.9 5.1 0.7 0.2
7 1491 173 4537 92.0 6.0 1.2 0.4
8 3160 218 7804 95.6 3.5 0.5 0.2
9 1104 16 152 93.4 5.3 0.7 0.7

10 1800 186 4685 92.7 5.8 0.9 0.3
11 1056 66 2436 91.5 6.7 1.1 0.3
12 36 3 59 83.1 11.9 1.7 0.0
13 166 8 392 89.5 9.7 0.5 0.3
14 103 4 208 91.3 7.7 0.5 0.0
15 98 4 117 94.0 4.3 0.9 0.9
16 241 12 394 88.8 9.1 0.8 0.3
17 43 2 16 81.3 12.5 6.3 0.0
18 50 2 77 88.3 11.7 0.0 0.0
19 167 7 145 88.3 9.7 0.7 1.4
Let us evaluate the complexity of the proposed
algorithm. Consider one iteration of the repeat…until
loop. Let Ni be the total number of duplicates in
groups from before the -th iteration.
Remember that this search is performed with the use
of an interval tree. Therefore, according to [38], the
complexity of detecting duplicates that are nearby to
the given duplicate is, on average, ,
where M is the maximum number of nearby duplicates
that were found in such situations during all iterations
of the algorithm. Thus, the average complexity of
every iteration of this loop is .
The repeat…until loop iterates times at most,
where E is the maximum number of extension points
of groups in after the algorithm stops. In the
end, the complexity of the algorithm can be estimated
on average as , where

 is the number of exact duplicates in the initial
document (i.e., in our case, this is the cardinality of
Clone Miner’s output). N fluctuates a lot for real docu-
ments — it reached tens of thousands in our experi-
ments, while M did not exceed 10, and E did not
exceed 20. Therefore, we can conclude that the aver-
age complexity of this algorithm is . The
actual execution time of the algorithm during the pro-
cessing of documents of different sizeis presented in
Table 1. This table shows that the complexity mainly

∪SetG SetVG i

+(log)iM N2

∗ +((log))i iN M N2

+ 1E

SetVG

+ ∗ ∗ +((1) (log))E N M N2

= 1N N

∗(log)N N2
PROGRAMMING A
depends on the number of exact duplicates, and not
the size of the analyzed document.

6. EVALUATION

The proposed algorithm was implemented in the
Duplicate Finder Toolkit [11]. Our prototype uses the
intervaltree library [39] as an implementation of the
interval tree data structure.

We have evaluated 19 industrial documents belong-
ing to various types: requirement specification, pro-
gramming guides, API documentation, user manuals,
etc. (see Table 1). The size of the evaluated documents
is up to 3 Mb.

Our evaluation produced the following results. The
majority of the duplicate groups detected are exact
duplicates (88.3–96.5%). Groups having one variation
point amount to 3.3–12.5%, two variation points – to
0–1.7%, and three variation points – to less 1%, etc.
A few near duplicates with 11, 12 13, and 16 variation
points also were detected. We performed a manual
analysis of the automatically detected near duplicates
for Linux Kernel Documentation (programming
guide, document 1 in the Table 1) [12]. We found 70
meaningful text groups (5.4%), 30 meaningful groups
for the code example (2.3%), and 1191 false positive
groups (92.3%). We found 21 near duplicate groups,
i.e. 21% of the meaningful duplicate groups. There-
ND COMPUTER SOFTWARE Vol. 44 No. 5 2018

DETECTING NEAR DUPLICATES 341
fore, the share of near duplicates significantly
increases after discarding false positives.

Having analyzed the evaluation results, we can
make the following conclusions:

1. During our experiments we did not manage to
find any near duplicates in considered documents that
were not detected by our algorithm. However, we
should note that the claim of the algorithm’s high
recall needs a more detailed justification.

2. Analyzing the Linux Kernel Documentation, we
have concluded that it does not have any cohesive
style: it was created sporadically by different authors.
Virtually all its duplicates are situated locally, i.e. close
to each other. For example, some author created a
description of some driver’s functionality using
copy/paste for its similar features. At the same time,
another driver was described by a different author who
did not use the first driver’s description at all. Conse-
quently, there are practically no duplicates that are
found throughout the whole text. Examples, warnings,
notes, and other documentation elements that are pre-
ceded by different introductory sentences are not
styled cohesively as well. Thus, our algorithm can be
used for analyzing the degree of documentation uni-
formity.

3. The algorithm performs well on two-element
groups, finding near duplicate groups with a different
number of extension points. It appears that, in gen-
eral, there are way fewer near duplicate groups with
more than two elements.

4. Many detected duplicate groups consist of figure
and table captions, page headers, parts of the table of
contents and so on – that is, they are not of any inter-
est to us. Also, many found duplicates are scattered
across different elements of document structure, for
example, a duplicate can be a part of a header and a
small fragment of text right after it. These kinds of
duplicates are not desired since they are not very use-
ful for document writers. However, they are detected
because currently document structure is not taken into
account during the search.

5. The 0.15 value used in detecting near duplicate
groups does not allow to find some significant groups
(mainly small ones, 10–20 tokens in size). It is possi-
ble that it would be more effective to use some func-
tion instead of a constant, which could depend, for
example, on the length of the near duplicate.

6. Moreover, often the detected duplicate does not
contain variational information that is situated either
in its end or in its beginning. Sometimes it could be
beneficial to include it in order to ensure semantic
completeness. To solve this problem, aclarification
and a formal definition of semantic completeness of a
text fragment is required. Our experiments show that
this can be done in various ways (the simplest one is
ensuring sentence-level granularity, i.e. including all
text until the start/end of sentence).
PROGRAMMING AND COMPUTER SOFTWARE Vol.
7. Processing real documents, the algorithm
showed an acceptable execution time – 5.4 minutes in
the worst case, with the average of 1.3 minutes.

7. CONCLUSION
In this paper the formal definition of near dupli-

cates in software documentation is given and the algo-
rithm for near duplicate detection is presented. An
evaluation of the algorithm using a large number of
both commercial and open source documents is per-
formed.

The evaluation shows that various types of software
documentation contain a significant number of exact
and near duplicates. A near duplicate detection tool
could improve the quality of documentation, while a
duplicate management technique would simplify doc-
umentation maintenance.

Although the proposed algorithm provides ample
evidence on text duplicates in industrial documents, it
still requires improvements before it can be applied to
real-life tasks. The main issues to be resolved are the
quality of the near duplicates detected and a large
number of false positives. Also, a detailed analysis of
near duplicate types in various sorts of software docu-
ments should be performed.

Furthermore, a detailed analysis of near duplicate
types common to different documentation types is
required. Integration of documentation reuse (in par-
ticular, requirement specification) with automated test
development [40, 41], and diagrammatic modeling of
duplicate structure [40] could be interesting courses of
development for our work.

ACKNOWLEDGMENTS
This work is partially supported by RFBR grant

no. 16-01-00304.

REFERENCES
1. Parnas, D.L., Precise documentation: The key to better

software, in The Future of Software Engineering, Berlin,
Heidelberg: Springer-Verlag, 2011, pp. 125–148.

2. Juergens, E., Deissenboeck, F., Feilkas, M., Hummel, B.,
Schaetz, B., Wagner, S., Domann, C., and Streit, J.,
Can clone detection support quality assessments of
requirements specifications?, in Proceedings of the 32
ACM/IEEE International Conference on Software Engi-
neering (ICSE’10), New York, NY, USA: ACM, 2010,
vol. 2, pp. 79–88.

3. Nosál’, M. and Porubän, J., Preliminary report on
empirical study of repeated fragments in internal docu-
mentation, Proceedings of Federated Conference on Com-
puter Science and Information Systems, 2016, pp. 1573–
1576.

4. Koznov, D.V. and Romanovsky, K.Yu., DocLine: A
method for software product lines documentation devel-
opment, Program. Comput. Software, 2008, vol. 34, no. 4,
pp. 216–224.
44 No. 5 2018

342 LUCIV et al.
5. Romanovsky, K., Koznov, D., and Minchin, L., Refac-
toring the documentation of software product lines,
Lecture Notes in Compute Science, Berlin, Heidelberg:
Springer-Verlag, 2011, vol. 4980 of CEE-SET 2008,
pp. 158–170.

6. Wingkvist, A., Lowe, W., Ericsson, M., and Lincke, R.,
Analysis and visualization of information quality of
technical documentation, Proceedings of the 4th Euro-
pean Conference on Information Management and Eval-
uation, 2010, pp. 388–396.

7. Koznov, D., Luciv, D., Basit, H.A., Lieh, O.E., and
Smirnov, M., Clone detection in reuse of software tech-
nical documentation, International Andrei Ershov
Memorial Conference on Perspectives of System Informat-
ics, 2015, Springer Nature, 2016, vol. 9609 of Lecture
Notes in Computer Science, pp. 170–185.

8. Luciv, D.V., Koznov, D.V., Basit, H.A., and
Terekhov, A.N., On fuzzy repetitions detection in doc-
umentation reuse, Program. Comput. Software, 2016,
vol. 42, no. 4, pp. 216–224.

9. Basit, H.A., Puglisi, S.J., Smyth, W.F., Turpin, A., and
Jarzabek, S., Efficient token based clone detection with
flexible tokenization, Proceedings of the 6th Joint Meet-
ing on European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of
Software Engineering: Companion Papers, New York,
NY, USA: ACM, 2007, pp. 513–516.

10. Bassett, P.G., Framing software reuse: Lessons from
the real World, Upper Saddle River, NJ, USA: Pren-
tice-Hall, 1997.

11. Documentation Refactoring Toolkit. http://www.
math.spbu.ru/user/kromanovsky/docline/index_en.
html.

12. Torvalds, L., Linux Kernel Documentation, Dec 2013
snapshot. https://github.com/torvalds/linux/tree/
master/Documentation/DocBook/.

13. Horie, M. and Chiba, S., Tool support for crosscutting
concerns of API documentation, Proceedings of the 9th
International Conference on Aspect-Oriented Software
Development, New York, NY, USA: ACM, 2010,
pp. 97–108.

14. Nosál’, M. and Porubän, J., Reusable software docu-
mentation with phrase annotations, Central Europ. J.
Comput. Sci., 2014, vol. 4, no. 4, pp. 242–258.

15. Oumaziz, M.A., Charpentier, A., Falleri, J.-R., and
Blanc, X., Documentation reuse: Hot or not? An
empirical study, Mastering Scale and Complexity in Soft-
ware Reuse: 16th International Conference on Software
Reuse, ICSR 2017, Salvador, Brazil, 2017, Proceedings,
Botterweck, G. and Werner, C., Eds., Cham: Springer-
Verlag, 2017, pp. 12–27.

16. Rago, A., Marcos, C., and Diaz-Pace, J.A., Identifying
duplicate functionality in textual use cases by aligning
semantic actions, Software Syst. Model., 2016, vol. 15,
no. 2, pp. 579–603.

17. Huang, T.-K., Rahman, Md.S., Madhyastha, H.V.,
Faloutsos, M., and Ribeiro, B., An analysis of socware
cascades in online social networks, Proceedings of the
22Nd International Conference on World Wide Web,
New York, NY, USA: ACM, 2013, pp. 619–630.

18. Williams, K. and Giles, C.L., Near duplicate detection
in an Academic Digital Library, Proceedings of the ACM
PROGRAMMING A
Symposium on Document Engineering, New York, NY,
USA: ACM, 2013, pp. 91–94.

19. Zhang, Q., Zhang Yu., Yu, H., and Huang, X., Effi-
cient partial-duplicate detection based on sequence
matching, Proceedings of the 33rd International ACM
SIGIR Conference on Research and Development in
Information Retrieval, New York, NY, USA: ACM,
2010, pp. 675–682.

20. Abdel Hamid, O., Behzadi, B., Christoph, S., and
Henzinger, M., Detecting the origin of text segments
efficiently, Proceedings of the 18th International Confer-
ence on World Wide Web, New York, NY, USA: ACM,
2009, pp. 61–70.

21. Ramaswamy, L., Iyengar, A., Liu, L., and Douglis, F.,
Automatic detection of fragments in dynamically gen-
erated web pages, Proceedings of the 13th International
Conference on World Wide Web, New York, NY, USA:
ACM, 2004, pp. 443–454.

22. Gibson, D., Punera, K., and Tomkins, A., The volume
and evolution of web page templates, Special Interest
Tracks and Posters of the 14th International Conference
on World Wide Web, New York, NY, USA: ACM, 2005,
pp. 830–839.

23. Vall’es, E. and Rosso, P., Detection of near-duplicate
user generated contents: The SMS spam collection,
Proceedings of the 3rd International Workshop on Search
and Mining User-generated Contents, New York, NY,
USA: ACM, 2011, pp. 27–34.

24. Barrón-Cedeño, A., Vila, M., Martí, M., and Rosso, P.,
Plagiarism meets paraphrasing: Insights for the next
generation in automatic plagiarism detection, Comput.
Linguist., 2013, vol. 39, no. 4, pp. 917–947.

25. Antiplagiarism (in Russian). https://www.antipla-
giat.ru/. Accessed January 16, 2018.

26. Sajnani, H., Saini, V., Svajlenko, J., Roy, C.K., and
Lopes, C.V., SourcererCC: Scaling code clone detec-
tion to big-code, Proceedings of the 38th International
Conference on Software Engineering, New York, NY,
USA: ACM, 2016, pp. 1157–1168.

27. Jiang, L., Misherghi, G., Su, Z., and Glondu, S.,
DECKARD: Scalable and accurate tree-based detec-
tion of code clones, Proceedings of the 29th International
Conference on Software Engineering, Washington, DC,
USA: IEEE Computer Soc., 2007, pp. 96–105.

28. Cordy, J.R. and Roy, C.K., The NiCad clone detector,
in Proceedings of IEEE 19th International Conference on
Program Comprehension, 2011, pp. 219–220.

29. Akhin, M. and Itsykson, V., Tree slicing in clone detec-
tion: Syntactic analysis made (semi)-semantic (in Rus-
sian), Model. Anal. Inform. Syst., 2012, vol. 19, no. 6,
pp. 69–78.

30. Zeltser, N.G., Automatic clone detection for refactor-
ing, Proc. Inst. Syst. Program., 2013, vol. 25, pp. 39–50.

31. Wagner, S. and Fernández, D.M., Analyzing text in
software projects, The Art and Science of Analyzing Soft-
ware Data, Elsevier, 2015, pp. 39–72.

32. Korshunov, A. and Gomzin, A., Topic modeling in
natural language texts (in Russian), Proc. Inst. Syst.
Program., 2012, vol. 23, pp. 215–242.

33. Tomita-parser – Yandex Technologies (in Russian).
https://tech.yandex.ru/tomita/. Accessed January 16,
2018.
ND COMPUTER SOFTWARE Vol. 44 No. 5 2018

DETECTING NEAR DUPLICATES 343
34. Rattan, D., Bhatia, R., and Singh, M., Software clone
detection: A systematic review, Inform. Software Tech-
nol., 2013, vol. 55, no. 7, pp. 1165–1199.

35. Abouelhoda, M.I., Kurtz, S., and Ohlebusch, E.,
Replacing suffix trees with enhanced suffix arrays, J.
Discrete Algorithms, 2004, vol. 2, no. 1, pp. 53–86.

36. Bassett, P.G., The theory and practice of adaptive
reuse, SIGSOFT Software Eng. Notes, 1997, vol. 22,
no. 3, pp. 2–9.

37. de Berg, M., Cheong, O., van Kreveld, M., and Over-
mars, M., Computational Geometry, Berlin: Springer,
2008, pp. 220–226.

38. Preparata, F.P. and Shamos, M.I., Computational
Geometry: An Introduction, Berlin: Springer-Verlag,
1985, pp. 359–363.

39. PyIntervalTree. URL: https://github.com/chaimleib/
intervaltree.

40. Kolchin, A.V., Kotljarov, V.P., and Drobincev, P.D.,
The method of test scenariogeneration in the environ-
ment of the insertion modeling, Control Syst. Mach.,
2012, no. 6, pp. 43–48, 63.

41. Pakulin, N.V. and Tugaenko, A.N., Model-based test-
ing of Internet Mail Protocols, Proc. Inst. Syst. Pro-
gram., 2011, vol. 20, pp. 125–141.

42. Kudryavtsev, D. and Gavrilova T., Diagrammatic
knowledge modeling for managers: Ontologybased
approach, Proceedings of the International Conference on
Knowledge Engineering and Ontology Development, 2011,
pp. 386–389.
PROGRAMMING AND COMPUTER SOFTWARE Vol. 44 No. 5 2018

	1. INTRODUCTION
	2. RELATED WORK
	3. EXACT DUPLICATE DETECTION AND CLONE MINER
	4. NEAR DUPLICATE DEFINITION
	5. NEAR DUPLICATE DETECTION ALGORITHM
	6. EVALUATION
	7. CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

