
216

ISSN 0361-7688, Programming and Computer Software, 2016, Vol. 42, No. 4, pp. 216–224. © Pleiades Publishing, Ltd., 2016.
Original Russian Text © D.V. Luciv, D.V. Koznov, H.A. Basit, A.N. Terekhov, 2016, published in Programmirovanie, 2016, Vol. 42, No. 4.

On Fuzzy Repetitions Detection in Documentation Reuse
D. V. Luciva, D. V. Koznova, H. A. Basitb, and A. N. Terekhova

a St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034 Russia
b Lahore University of Management Sciences, Opposite Sector U, DHA, Lahore, 54792 Pakistan

e-mail: d.lutsiv@spbu.ru, d.koznov@spbu.ru, a.terekhov@spbu.ru, hamidb@lums.edu.pk
Received February 12, 2016

Abstract—Increasing complexity of software documentation calls for additional requirements of document
maintenance. Documentation reuse can make a considerable contribution to solve this problem. This paper
presents a method for fuzzy repetitions search in software documentation that is based on software clone
detection. The search results are used for document refactoring. This paper also presents Documentation
Refactoring Toolkit implementing the proposed method and integrated with the DocLine project. The pro-
posed approach is evaluated on documentation packages for a number of open-source projects: Linux Kernel,
Zend Framework, Subversion, and DocBook.

DOI: 10.1134/S0361768816040046

1. INTRODUCTION
Documentation is an important integral part of

modern software. There are two types of documenta-
tion: technical documentation (requirements, project
specifications, test plans and reports, API documenta-
tion, and so on [1]) and user documentation. Techni-
cal documentation helps software developers to read
and understand software products, as well as to facili-
tate their development and modification [2]. And yet,
technical documentation can be of considerable size
and complexity. Like software itself, software docu-
mentation is steadily improved in the process of soft-
ware development and maintenance. Improving qual-
ity of technical documentation is a well-known prob-
lem that has not yet been solved [3, 4].

One of the reasons for the poor quality of docu-
mentation is a large number of uncontrolled repeti-
tions. This makes document maintenance more com-
plicated, since, to keep consistency, one has to update
a number of parts of documents that contain repli-
cated data. This is often neglected due to a lack of time
and technical facilities. As a result, the number of
errors in documentation gradually increases. The situ-
ation seems to be even more difficult because of near
text duplicates: the same software features can be
described from different points of view with different
details. Moreover, software documentation contains
descriptions of similar objects (functions, interrupts,
classes, and messages); thus, the corresponding text
fragments involve both similarities and differences.
It should also be noted that uniform documentation is
a good form, where the description of similar objects
has a common structure and matches in the text parts
that describe the same data.

There are various software reuse techniques [5, 6].
The DocLine environment [9], which is a basis of the
research presented in this paper, uses Bassett and Jar-
zabek’s adaptive reuse technique [7, 8], which
is employed in the DocLine documentation
development technology. This technology supports
XML documentation refactoring (changing the XML
representation of a document, while preserving its
appearance) [10]. However, a certain problem arises
concerning automatic search for repeating text frag-
ments. In [11, 12], a software clone detection approach
based on the Clone Miner tool [13] was proposed for
finding textual repetitions. Yet, only crisp repetitions
were considered.

This work continues the investigation [9] by
addressing the problem of finding fuzzy repetitions
that are composed of crisp repetitions if corresponding
clone groups are positioned close to one another in
text. The developed algorithm is implemented as a part
of the Document Refactoring Toolkit [14] and is eval-
uated on documentation packages for some well-
known open-source projects: Linux Kernel [15], Zend
Framework [16], Subversion [17], and DocBook [18].

2. OVERVIEW
An overview of the field of technical documenta-

tion development (problems and solutions) can be
found in [19]. Below, we confine ourselves to some
works devoted to automatic analysis and processing of
documents.

In [20], an approach to automatic generation of
software resource specifications based on API docu-
mentation is proposed. This approach addresses the

PROGRAMMING AND COMPUTER SOFTWARE Vol. 42 No. 4 2016

ON FUZZY REPETITIONS DETECTION 217

following problem: developers often misread software
documentation and, therefore, make lots of mistakes
when developing software resources, although
resource description is fully contained in the docu-
mentation and can be used as input data for automatic
generation.

In [21], an approach is proposed to finding errors
in software documentation by comparing program
code entities described in the documentation (data
types, procedures, variables, classes, etc.) with code
examples also contained in it.

In [2], it is proposed to estimate the quality of proj-
ect documentation on the basis of expert polls.

In [22, 23], some metrics for documentation qual-
ity evaluation are proposed. Authors adapted the
VizzAnalyzer tool designed for software clone detec-
tion [24] to finding repetitions in technical documen-
tation.

XML languages are widely used to develop technical
documentation. The best known XML languages are
DocBook [25] and DITA [26], which support the mod-
ular approach and allow constructing reusable text
modules. However, these languages weakly support
documentation reuse. In the DocLine technology [12],
the Bassett–Jarzabek adaptive reuse technique [7, 8]
is applied to documentation; this technology supports
reuse parameterization and planning. It should be
noted, however, that all these approaches assume that
software documentation is originally developed as a
set of reusable modules and provide no means for rep-
etitions detection.

Thus, we can draw the following conclusion. Rep-
etitions detection in technical documentation is used
only in [22, 23, 27, 28]. Yet, in [22, 23], repetitions
found are used only for determining the quality of
documentation, but not for document transformation.
In [28, 29], repetitions are used for automatic refactor-
ing of documents according to the refactoring method
described in [10]. And still, in all these works, only
crisp repetitions are considered.

3. TECHNOLOGIES IN USE
AND THE DOCLINE PROJECT

3.1. DocBook

DocBook [25] is a set of standards and tools for
technical documentation development in XML.1

DocBook separates text representation (boldface font,
italic font, alignment, etc.) from content of docu-
ments, thus implementing the idea of single source:
the same document can be represented in HTML,
PDF, etc. DocBook is easy to extend, particularly, by
introducing additional constructions and preprocess-
ing operations.

1 Strengths and weaknesses of XML documentation development
tools are discussed in [26].

3.2. DocLine
The DocLine technology [12] is designed for

developing and maintaining complex software docu-
mentation on the basis of adaptive reuse [7, 8], which
allows configuring text fragments depending on their
context. DocLine contains a model of documentation
development process and Eclipse-based software
tools, as well as supplements DocBook with the deci-
sion representation language (DRL). The DRL sup-
ports two mechanisms of adaptive reuse: configurable
information elements and Multi-view item catalogues.

Information elements. Consider an example. Sup-
pose that we have a news aggregator that downloads
news data from various news feeds. Below is a frag-
ment of its documentation (receiving news from RSS
and Atom feeds).
When module instance receives
refresh_news call, it updates its
data from RSS and Atom feeds it is
configured to listen to and pushes new
articles to the main
storage. (1)

In addition, the aggregator can receive news from
Twitter feeds.

When module instance receives
refresh_news call, it updates its
data from Twitter feeds it is sub-
scribed to and pushes new articles to
the main storage. (2)

To reuse the repeating text from (1) and (2), an
information element is created:

<infelement id="refresh_news">
When module instance receives
refresh_news call, it updates its
data from <nest id="SourceType">>
</nest> and pushes new articles to the
main storage. </infelement> (3)

The tag <nest/> denotes an extension point
(possibility of parameter substitution). When using the
information element in a certain context, the exten-
sion point can be deleted, replaced, or supplemented
with some text. Below is an example of using (3) to
form text (2):

<infelemref infelemid="refresh_
news">> <replace-nest nestid="Source-
Type">>Twitter feeds it is subscribed
to </replace-nest> </infelemref> (4)

In (4), there is a link to the information element
defined in (3) (<infelemref/>) with its extension
point being replaced by a new text fragment
(<replace-nest/>).

Multi-view item catalogues. Generally, documen-
tation of software products contains descriptions of
entities that have the same functions but represented
differently. A special case of a catalogue is a dictionary
containing descriptions of terms. Dictionaries are use-
ful for constructing glossaries and for unifying terms

218

PROGRAMMING AND COMPUTER SOFTWARE Vol. 42 No. 4 2016

LUCIV et al.

contained in documentation. In [10, 12], Multi-view
item catalogues are described in more detail.

3.3. Documentation Refactoring

Refactoring is a process of restructuring program
code to improve its internal structure without affecting
its functionality [29]. In [10], the concept of refactor-
ing was expanded for XML documentation to enable
modification of an internal XML representation while
preserving finite text representations (for example,
PDF). The following set of refactoring operations was
developed:

1. selecting common entities (particularly, to trans-
fer from plain text and DocBook to the DRL);

2. tuning key entities;
3. fine-grain reuse with the application of dictio-

naries and Multi-view item catalogues;
4. renaming various structure elements.

3.4. Software Clone Detection and Clone Miner

Software clone detection is now being intensively
developed, and a great number of clone detection tools
are presently available [30, 31]. In [11, 12], it was pro-
posed to use clone detection methods and instruments
for finding textual repetitions. The Clone Miner tool
[13] was used, which is a token-based detector of
clones with a command line interface that transforms
program code into a list of tokens. The detector is
based on suffix arrays [32]. Clone Miner allows adjust-
ing the minimum length of clones (number of tokens).
For instance, a text fragment “FM registers” consists
of two tokens. For our purposes, Clone Miner has
been upgraded to support Unicode, which allows
experimenting with texts in different languages.

4. REPETITION SEARCH PROCESS
AND DOCUMENT REFACTORING

4.1. Process Flowchart

The general f lowchart of the repetition search pro-
cess is shown in Fig. 1. First, a documentation file is
preprocessed and, then, is passed to Clone Miner; the
results are filtered, and the user can automatically
refactor any clone groups detected. The refactoring
procedure yields a reusable information element or
dictionary entry.

4.2. Preparation for Clone Detection

DocLine can work only with DRL constructions
(particularly, clone detection is carried out for infor-
mation elements). If a source file contains plain text,
then DocLine transforms it into one information ele-
ment (“transfer to DRL” operation). Thereafter, the
document can undergo further processing.

4.3. Clone Detection

Clone Miner searches through plain text, since
found repetitions may violate the XML markup.
Below is an example in which a detected clone that
includes an opening tag (but not a closing one) is ital-
icized. In the process of refactoring, the violated
markup of the clones and surrounding text is cor-
rected.

<section id="file-tree-isa-direc-
tory>>

<title>Reviving incoming calls
</title>

<para>

Once you receive an incoming call,

the phone gets CallerID information

and reads it out. But if…</para>

</section> (5)

4.4. Filtering

The technical writer makes the final decision about
which of the detected clones should be refactored. The
list of clones detected by the Clone Miner, however, is
quite large (thousands of groups of clones) and must
be filtered to get rid of junk. The filtering procedure
involves the following steps.

1. Reject clone groups containing less than five
symbols (for example, a group “is a” consists of three
symbols); generally, such clones have no independent
meaning but prove to be rather numerous.

2. Reject groups that contain only XML markup
without any text.

3. Reject groups of clones containing common lan-
guage phrases like, for example, “that is” or “there is
a.” In the process of document analysis, a dictionary
of phrases is constructed, and all clone groups are
checked whether their components are included into
this dictionary. If there is a match, then the group is
rejected.

Fig. 1. General f lowchart of the repetition search process.

 Source

document

 Preparation for

 clone detection

Clone detection in

 documentation

Clone detection

(Clone Miner)

Refactoring Filtering
Modified

document

PROGRAMMING AND COMPUTER SOFTWARE Vol. 42 No. 4 2016

ON FUZZY REPETITIONS DETECTION 219

4.5. Refactoring

The filtering procedure yields a set of clone groups.
Our final goal consists in using the clones to obtain
reusable elements. This goal can be achieved by fol-
lowing the process described below (see Fig. 2). In this
process, some operations are executed automatically,
but selection of refactoring candidates and application
of a particular refactoring operation are performed by
the user.

Detection of clone pairs. The set of clone groups

detected by Clone Miner is denoted by Pairs of
clone groups that contain clones positioned close to

one another in the text are selected from for
refactoring. For example, the following phrase occurs
in the text in five different variants with different port
numbers: “inet daemon can listen on … port and then
transfer the connection to appropriate handler.” This
example consists of two groups with five clones in
each: the first group contains clones “inet daemon can
listen on,” while the second group contains clones
“port and then transfer the connection to appropriate
handler.” These two groups can be combined to form
one information element with a single extension point
that can take values of different ports.

Below, we propose an algorithm for finding pairs of
clone groups, which can easily be extended to work
with n groups.

The distance between clones is a number of text
symbols between them (overlapping clones are not
considered). Hence, we can find the distance between

clone groups and if the following conditions
are met.

1. The groups contain the same number of clones:

2. The clones in both the groups are ranked in the
order of occurrence in a document with a serial num-
ber being assigned to each clone. Thus, a set of clone
pairs is formed (in all pairs, the first clone belongs to
the first group, and the second, to the second group).

All pairs contain no overlapping clones: ∈
 = ∅, where and are the clones of

the groups and , respectively.

SetG.

SetG

1G 2G

1 2#G #G= .

k∀

1 1 2[1]
k k#G g g, ∩ 1

kg 2

kg

1G 2G

3. If we have two clones from two groups, and these
clones have the same numbers, then one clone pro-
ceed to another, and this is true for any such clone
pairs:

where and are clones of the groups and ,
respectively.

The distance between the groups and is

defined as = , where

dist is a distance (in symbols) between the clones

and This definition makes it possible, upon select-
ing a clone group, to compare distances from this
group to other groups in order to select the nearest
one. In addition, we reject the pairs in which distances
between the corresponding clones of the first and sec-
ond groups vary considerably. For instance, if the dis-
tance between clones of the first pair is one symbol,
while that between clones of the second pair is
10 000 symbols, then there is almost no chance that
these groups can somehow contribute to a common
meaning. Having experimented, we came to a conclu-
sion that, for pairs of clone groups, the variance of dis-
tances between their clones should be bounded from

above at 2000: ∈ ,

, ≤ 2000. Thus, we eliminate the
pairs with greater variance from consideration.

The algorithm searches through all groups from

 and finds the nearest one for each of them. With
such groups found (if any), a new pair of groups is

included into the set ; henceforth, these groups
are not considered.

Analysis of pairs and individual groups. At this step,
pairs of clone groups and individual groups are
included into a list L:

From this list, the user selects desired groups to form
reusable information elements or dictionary entries

1 1 2 1

2 1

[1] () [1]

()

k k

k k

k #G Before g g k #G

Before g g

∀ ∈ , , ∀ ∈ ,
, ,

∨

1

kg 2

kg 1G 2G

1G 2G

1 2()dist G G,
11 1 2max ()

k k
k G dist g g≤ ≤ ,

1

kg

2

kg .

1 2({ ()
k kVar dist g g k, ∨ 1[1]#G,

1 1

kg G∈ 2 2})
kg G∈

SetG

PairG

= ∈ ∃ ∈ :/
= = .

∨
∨

∪{ |

() ()}

L PairG G G SetG P PairG G

left P G right P

Fig. 2. Refactoring process.

Clone groups

 detected
Pair detection

Analyzing pairs and

 individual groups

Modified document
Creating information elements

 and adding dictionary entries

 Check for clone

 overlapping

Correcting the

XML structure

220

PROGRAMMING AND COMPUTER SOFTWARE Vol. 42 No. 4 2016

LUCIV et al.

(hereinafter, we refer to the elements of this list as

refactoring candidates or, simply, candidates). It is

important for reusable text fragments to be meaningful

(for example, be a part of a description for a function

or interrupt). Reuse that is based only on syntax and

ignores semantics is quite ineffective. But it seems

impossible to analyze meaningfulness of candidates

automatically, and this is a reason why the user is pro-

vided with a browser interface for viewing and execut-

ing refactoring operations.

The candidates in the list L are ranked in the

descending order of their lengths (in symbols). The

length of a clone is the number of its symbols, while

the length of a group is a sum of lengths of clones in

this group: = , .

The length of a pair is found as a sum of lengths of

groups constituting this pair: =

 + The candidates containing

the maximum amount of text (candidates that are

most preferable for reuse) are placed at the top of the

list L.

Creation of information elements and dictionary
updating. For a selected candidate, the user can exe-

cute the following refactoring operations (see Subsec-

tion 3.3): create an information element, create a vari-

ative information element, and add a dictionary entry.

Before executing these operations, the proposed

algorithm checks whether the clones of a candidate are

overlapped with the clones that have already under-

gone refactoring. Clone Miner allows clone groups to

overlap, since it does not imply the further processing.

In our case, such overlapping leads to refactoring

errors. The clones overlapping with already used ones

are eliminated from the candidate list.

Then, the algorithm corrects XML markup of the

candidate and the corresponding document context.

As noted above, Clone Miner yields results that are

incorrect in terms of XML, while DocLine can work

only with correct DRL and DocBook documents. Our

toolkit balances the violated XML markup (opens and

closes all missing tags). Note that a full-fledged imple-

mentation of such balancing is quite a complex prob-

lem. For instance, if the tag <para> (sets a para-

graph) is unnecessarily opened and closed one more

time, then the resultant DocBook document will con-

tain two paragraphs instead of one. Handling such sit-

uations is one of the problems to be addressed in fur-

ther works.

Once the refactoring procedure for the selected

candidate is complete, coordinates of the other candi-

dates in text are recalculated according to the changes

introduced into the document. The user can also

return to the analysis of pairs and groups (candidates).

()G Llength G∀ ∈ ()#G length g⋅ g G∈

1 2(())length Pair G G,
1()length G 2()length G .

5. DOCUMENTATION
REFACTORING TOOLKIT

To implement the process described above, the
documentation refactoring toolkit is proposed [14],
The toolkit is integrated with DocLine, but can be
used independently of Eclipse and DocLine, since it is
implemented in Python. The documentation refactor-
ing toolkit allows browsing candidates and original
documentation text simultaneously, as well as select-
ing candidates for refactoring.

Figure 3 shows the candidate browser. Rows of the
table “Refactoring candidates” correspond to particu-
lar candidates. The context menu allows the user to
choose a refactoring operation for a selected candidate
(create an information element or add a dictionary
entry). For an individual group, links to its clones
(under the candidate text) are highlighted with alter-
nating colors (see numbers in braces under the clone
text for the first candidate in Fig. 3); for a pair of
clones, alternating colors indicate different variants of
text in the extension point (see information about the
second candidate in Fig. 3). The section “Source text”
contains the source text of a document. When clicking
on a variant in the table, a source text fragment, which
consists of two clones with a selected text variant
between them, is highlighted. When clicking on a
clone link in the table, the corresponding clone is
highlighted in the section “Source text.” Highlighting
allows the user to see not only the selected text frag-
ment but also its context.

6. EVALUATION

To evaluate the effectiveness of the proposed
approach, a series of experiments were carried out on
specially prepared tests and on DockBook documen-
tation for some open-source projects (see the list of
the projects and documents in Table 1).

We used the Goal-Question-Metric (GQM)
approach [33] with a goal to evaluate the proposed
approach and tool. The following questions corre-
spond to the goal:

• question 1: quality of clone detection;

• question 2: effectiveness of clone filtering;

• question 3: refactoring capabilities.

To answer each of these questions, a special series
of experiments were conducted.

The first series of experiments concerned the use of
Clone Miner. A small set of documents with repeti-
tions (in the number of 10) was created manually.
It was found that Clone Miner ignored the last repeat-
ing token in the clones. Upon making some improve-
ments, the proposed toolkit successfully detected all
repetitions.

The experiments to answer the second question
involved the documentation from Table 1. As a filtering
effectiveness metric, we used the number of clones fil-

PROGRAMMING AND COMPUTER SOFTWARE Vol. 42 No. 4 2016

ON FUZZY REPETITIONS DETECTION 221

tered based on the criteria described in Subsection 4.4.
The results are shown in Table 2; note that, on the
average, filtering reduces the number of clones by
13.2%.

The number of candidates after filtering is shown in
Table 3 for the minimum clone length (a Clone Miner
parameter) of one and five tokens. For five tokens, the
number of candidates is far less. The rejected short
clones, however, can be useful for constructing clone

pairs and for completing the dictionary, as well as in
some other important cases. On this evidence, we rec-
ommend the technical writer to work with clones more
than one token long. Ranking the candidate list will
place most of short candidates at the bottom.

In the experiments to answer the third question,
the “amount of reuse” metric [34] was employed. It is
calculated as a ratio between the volume of the reus-
able text and the overall volume of the documentation:

Fig. 3. Documentation Refactoring Toolkit.

Table 1. Documents used in the experiments

Project Documentation Short form Size

Linux Kernel (open-source basis of the Linux OS) Linux Kernel Documentation [15] LKD 892 KB

Zend Framework (open-source PHP framework

for web site and service development)

Zend PHP Framework documentation [16] Zend 2924 KB

Subversion (centralized version control system) Version Control with Subversion For Subver-

sion 1.7 [17]

SVN 1810 KB

DocBook (language and toolset for documenta-

tion development)

DocBook 4 De_nitive Guide [18] DocBook 686 KB

222

PROGRAMMING AND COMPUTER SOFTWARE Vol. 42 No. 4 2016

LUCIV et al.

where is the number of symbols in a clone
(or in a clone pair) multiplied by the number of clones
in the corresponding group(s) (see Subsection 4.5),

while is the length of the whole text in sym-
bols.

The size of the documents used was measured in
symbols. On the average, for all documents (see Table 1),
the amount of reuse was from 48% to 53% for the
clones more than 1 token long and from 21% to 28%
for the clones more then 5 tokens long. These results
suggest that, in the case of automatic refactoring, reuse
can affect documentation quite considerably. How-
ever, it is difficult to evaluate actual amount of reuse,
since it is reasonable to select only semantically signif-
icant repetitions. To obtain more accurate estimates,
more experiments are required.

7. CONCLUSIONS

The approach proposed in this paper can be applied
to processing software product lines documentation. It
allows selecting reusable text fragments to restructure
documentation of various software products, thus sim-
plifying its maintenance and improving its quality. In
addition, the proposed approach can be used for varia-
tion management [35, 36].

When conducting the experiments, we also came to
the conclusion that our toolkit needs more f lexible
construction of information elements and a more
user-friendly interface.

The results of our experiments show that, even after
filtering, we have to deal with a great number of “junk”
clones. Improving the accuracy of filtering is one of
the main problems to be addressed in further works.
It is also required to enhance the adaptive reuse to

∈
,

∑ ()

()

all candidates
c length C

length T

()length C

()length T

allow working with candidates having more than one
extension point.

In addition, support of semantically oriented reuse
can make it possible to combine our approach with
various software traceability techniques [37–40], as
well as to establish connections between documenta-
tion and other artifacts: program code, requirements,
models, etc. In this case, reuse can improve the quality
of these connections, while semantically oriented
reuse can increase their accuracy.

In addition to the field of software engineering, the
proposed approach can find its application in knowl-
edge management, ontology engineering [41–44], and
enterprise architecture modeling [45, 46]. In toolsets
being designed and used in these fields, models gener-
ally have an XML structure and often contain repeti-
tions, since, when constructing these models, analysts
have to work with a large amount of weakly structured
data (documents, comments to models, logical names
of entities, and so on).

REFERENCES

1. Watson, R., Developing best practices for API reference
documentation: Creating a platform to study how pro-
grammers learn new APIs, Proc. IPCC, 2012, pp. 1–9.

2. Garousi, G., Garousi, V., Moussavi, M., Ruhe, G., and
Smith, B., Evaluating usage and quality of technical
software documentation: An empirical study, Proc.
EASE, 2013, pp. 24–35.

3. Parnas, D.L., Precise documentation: The key to better
software, The Future of Software Engineering, Nanz, S.,
Ed., Springer, 2011.

4. Shalyto, A.A., New initiative in programming: Drive
for open project documentation, PC Week RE, 2003,
no. 40, pp. 38–42.

5. Holmes, R. and Walker, R.J., Systematizing pragmatic
software reuse, ACM Trans. Software Eng. Methodol.,
2013, vol. 21, no. 4, p. 44.

Table 2. Filtering results

Filtering method LKD, % Zend, % SVN, % DocBook, % On average, %

Rejecting clones under 5 symbols in length 7.3 4.8 4.4 7.2 5.9

Rejecting pure XML markup clone groups 3.3 5.8 2.4 6.0 4.4

Rejecting common language phrases 3.2 2.2 2.9 3.4 2.9

Total 13.8 12.8 9.7 16.6 13.2

Table 3. Number of candidates for clones from 1 and 5 tokens long

Number of candidates LKD Zend SVN DocBook

Individual 12819/1034 33400/5213 27847/3119 8228/870

Pairs 351/108 1400/613 616/249 232/50

Total 13170/1254 34800/5826 28463/3368 8460/920

PROGRAMMING AND COMPUTER SOFTWARE Vol. 42 No. 4 2016

ON FUZZY REPETITIONS DETECTION 223

6. Czarnecki, K., Software reuse and evolution with gen-
erative techniques, Proc. IEEE/ACM Int. Conf. Auto-
mated Software Engineering, 2007, p. 575.

7. Bassett, P., The theory and practice of adaptive reuse,
SIGSOFT Software Eng. Notes, 1997, vol. 22, no. 3,
pp. 2–9.

8. Jarzabek, S., Bassett, P., Zhang, H., and Zhang, W.,
XVCL: XML-based variant configuration language,
Proc. ICSE, 2003, pp. 810–811.

9. Koznov, D. and Romanovsky, K., DocLine: A method
for software product lines documentation develop-
ment, Program. Comput. Software, 2008, vol. 34, no. 4,
pp. 216–224.

10. Romanovsky, K., Koznov, D., and Minchin, L.,
Refactoring the documentation of software product
lines, Lect. Notes Comp. Sci., 2011, vol. 4980, pp. 158–
170.

11. Koznov, D.V., Shutak, A.V., Smirnov, M.N., and
Smazhevskii, M.A., Clone search for technical docu-
mentation refactoring, Komp’yuternye instrumenty v
obrazovanii, 2012, no. 4, pp. 30–40.

12. Lutsiv, D.V., Koznov, D.V., Basit, H.A., Li, O.E.,
Smirnov, M.N., and Romanovskii, K.Yu., Method for
repeating text fragments search in technical documen-
tation, Nauchno-Tekh. Vestn. Inf. Tekhnol. Mekh. Opt.,
2014, vol. 4, no. 92, pp. 106–114.

13. Basit, H.A., Smyth, W.F., Puglisi, S.J., Turpin, A., and
Jarzabek, S., Efficient token-based clone detection
with f lexible tokenization, Proc. ACM SIGSOFT Int.
Symp. Foundations of Software Engineering, 2007,
pp. 513–516.

14. Mathematics and Mechanics Faculty of the St. Peters-
burg State University, Document Refactoring Toolkit.
http://www.math.spbu.ru/user/kromanovsky//docline/
index_en.html.

15. GitHub, Linux Kernel Documentation. https://github.
com/torvalds/linux/tree/master//Documentation/
DocBook.

16. GitHub, Zend PHP Framework documentation. https:
//github.com/zendframework/zf1/tree//master/docu-
mentation.

17. SourceForge, SVN Book. http://sourceforge.net/p/
svnbook/source/HEAD/tree/trunk/en/book.

18. SourceForge, DocBook Definitive Guide. http://
sourceforge.net/p/docbook/code/HEAD/tree/trunk
/defguide/en.

19. Zhi, J., Garousi, V., Sun, B., Garousi, G., Shahnewaz, S.,
and Ruhe, G., Cost, benefits and quality of technical
software documentation: A systematic mapping, J. Syst.
Software, 2012, pp. 1–24.

20. Zhong, H., Zhang, L., Xie, T., and Mei, H., Inferring
source specifications from natural language API docu-
mentation, Proc. 24th ASE, 2009, pp. 307–318.

21. Zhong, H. and Su, Z., Detecting API documentation
errors, Proc. SPASH/OOPSLA, 2013, pp. 803–816.

22. Wingkvist, A., Lowe, W., Ericsson, M., and Lincke, R.,
Analysis and visualization of information quality of
technical documentation, Proc. 4th Eur. Conf. Informa-
tion Management and Evaluation, 2010, pp. 388–396.

23. Wingkvist, A., Ericsson, M., and Lowe, W.A, Visual-
ization-based approach to present and assess technical

documentation quality, Electron. J. Inf. Syst. Eval.,
2011, vol. 14, no. 1, pp. 150–159.

24. Applied Research in System Analysis, VizzAnalyzer
Clone Detection Tool. http://www.arisa.se/vizz_ana-
lyzer.php.

25. Walsh, N. and Muellner, L., DocBook: The Definitive
Guide, O’Reilly, 1999.

26. Darwin Information Typing Architecture (DITA) Ver-
sion 1.2. http://docs.oasis-open.org/dita/v1.2/os/
spec/DITA1.2-spec.pdf.

27. Koznov, D.V., Shutak, A.V., Smirnov, M.N., and
Smazhevskii, M.A., Clone search for technical docu-
mentation refactoring, Komp’yuternye instrumenty v
obrazovanii, 2012, no. 4, pp. 30–40.

28. Lutsiv, D.V., Koznov, D.V., Basit, H.A., Li, O.E.,
Smirnov, M.N., and Romanovskii, K.Yu., Method for
repeating text fragments search in technical documen-
tation, Nauchno-Tekh. Vestn. Inf. Tekhnol. Mekh. Opt.,
2014, vol. 4, no. 92, pp. 106–114.

29. Fowler, M., Beck, K., Brant, J., Opdyke, W., and Rob-
erts, D., Refactoring: Improving the Design of Existing
Code, Addison-Wesley, 1999.

30. Rattan, D., Bhatia, R.K., and Singh, M., Software
clone detection: A systematic review, Inf. Software
Technol., 2013, vol. 55, no. 7, pp. 1165–1199.

31. Akhin, M. and Itsykson, V., Clone detection: Why,
what and how, Proc. CEE-SECR, 2010, pp. 36–42.

32. Abouelhoda, M.I., Kurtz, S., and Ohlebusch, E.,
Replacing suffix trees with enhanced suffix arrays, J.
Discrete Algorithms, 2004, vol. 53.

33. Basili, V.R., Caldeira, G., and Rombach, H.D., The
Goal Question Metric Approach, Wiley, 1994, vol. 1,
pp. 528–532.

34. Frakes, W. and Terry, C., Software reuse: Metrics and
models, ACM Comput. Surv., 1996, vol. 28, no. 2,
pp. 415–435.

35. Krueger, C.W., Variation management for software
product lines, Proc. SPL, San Diego, 2002, pp. 37–48.

36. Koznov, D.V., Novitskii, I.A., and Smirnov, M.N.,
Variation management tools: Ready for industrial
application, Tr. S.-Peterb. Inst. Inf. Avtom. Ross. Akad.
Nauk, 2013, no. 3, 297–331.

37. Abadi, A., Nisenson, M., and Simionovici, Y.A, Trace-
ability technique for specifications, Proc. ICPC, 2008,
pp. 103–112.

38. Terekhov, A.N. and Sokolov, V.V., Document imple-
mentation of the conformation of MSC and SDL dia-
grams in the REAL technology, Program. Comput. Soft-
ware, 2007, vol. 33, no. 1, pp. 24–33.

39. Koznov, D.V., Smirnov, M.N., Dorokhov, V.A., and
Romanovskii, K.Yu., WebMLDoc: An approach to
automatic change tracking in user documentation of
Web applications, Vestn. S.-Peterb. Univ., Ser. 10 Appl.
Math. Inf. Protsessy Upr., 2011, no. 3, pp. 112–126.

40. Smirnov, M.N., Koznov, D.V., Dorokhov, V.A., and
Romanovskii, K.Yu., WebMLDoc software environ-
ment for automatic change tracking in user documenta-
tion of Web applications, Sist. Program., 2010, vol. 5,
no. 1, pp. 32–51.

41. Gavrilova, T.A., Ontological engineering for practical
knowledge work, Proc. 11th Int. Conf. Knowledge-Based

224

PROGRAMMING AND COMPUTER SOFTWARE Vol. 42 No. 4 2016

LUCIV et al.

and Intelligent Information and Engineering Systems,
2007.

42. Kudryavtsev, D. and Gavrilova, T., Diagrammatic
knowledge modeling for managers: Ontology-based
approach, Proc. Int. Conf. Knowledge Engineering and
Ontology Development, 2011, pp. 386–389

43. Bolotnikova, E.S., Gavrilova, T.A., and Gorovoy, V.A.,
To a method of evaluating ontologies, J. Comput. Syst.
Sci. Int., 2011, vol. 50, no. 3, pp. 448–461.

44. Gavrilova, T.A., Gorovoy, V.A., and Bolotnikova, E.S.,
Evaluation of the cognitive ergonomics of ontologies on
the basis of graph analysis, J. Sci. Tech. Inf. Process.,
2010, vol. 37, no 6, pp. 398–406.

45. Grigoriev, L. and Kudryavtsev, D., ORG-Master:
Combining classifications, matrices, and diagrams in
the enterprise architecture modeling tool, Communica-
tions in Computer and Information Science, Springer,
2013, pp. 250–258.

46. Koznov, D.V., Arzumanyan, M.Yu., Orlov, Yu.V.,
Derevyanko, M.A., Romanovskii, K.Yu., and Sido-
rina, A.A., Specificity of projects in the field of enter-
prise architecture design, Biznes-informatika, 2005, no.
4., pp. 15–26.

Translated by Yu. Kornienko

